| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvfvalap | Unicode version | ||
| Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| Ref | Expression |
|---|---|
| dvval.t |
|
| dvval.k |
|
| Ref | Expression |
|---|---|
| dvfvalap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvap 15129 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | dvval.k |
. . . . . . . 8
| |
| 4 | 3 | oveq1i 5954 |
. . . . . . 7
|
| 5 | simprl 529 |
. . . . . . . . 9
| |
| 6 | 5 | oveq2d 5960 |
. . . . . . . 8
|
| 7 | dvval.t |
. . . . . . . 8
| |
| 8 | 6, 7 | eqtr4di 2256 |
. . . . . . 7
|
| 9 | 4, 8 | eqtr3id 2252 |
. . . . . 6
|
| 10 | 9 | fveq2d 5580 |
. . . . 5
|
| 11 | simprr 531 |
. . . . . . 7
| |
| 12 | 11 | dmeqd 4880 |
. . . . . 6
|
| 13 | simpl2 1004 |
. . . . . . 7
| |
| 14 | 13 | fdmd 5432 |
. . . . . 6
|
| 15 | 12, 14 | eqtrd 2238 |
. . . . 5
|
| 16 | 10, 15 | fveq12d 5583 |
. . . 4
|
| 17 | 15 | rabeqdv 2766 |
. . . . . . 7
|
| 18 | 11 | fveq1d 5578 |
. . . . . . . . 9
|
| 19 | 11 | fveq1d 5578 |
. . . . . . . . 9
|
| 20 | 18, 19 | oveq12d 5962 |
. . . . . . . 8
|
| 21 | 20 | oveq1d 5959 |
. . . . . . 7
|
| 22 | 17, 21 | mpteq12dv 4126 |
. . . . . 6
|
| 23 | 22 | oveq1d 5959 |
. . . . 5
|
| 24 | 23 | xpeq2d 4699 |
. . . 4
|
| 25 | 16, 24 | iuneq12d 3951 |
. . 3
|
| 26 | simpr 110 |
. . . 4
| |
| 27 | 26 | oveq2d 5960 |
. . 3
|
| 28 | simp1 1000 |
. . . 4
| |
| 29 | cnex 8049 |
. . . . 5
| |
| 30 | 29 | elpw2 4201 |
. . . 4
|
| 31 | 28, 30 | sylibr 134 |
. . 3
|
| 32 | 29 | a1i 9 |
. . . 4
|
| 33 | simp2 1001 |
. . . 4
| |
| 34 | simp3 1002 |
. . . 4
| |
| 35 | elpm2r 6753 |
. . . 4
| |
| 36 | 32, 31, 33, 34, 35 | syl22anc 1251 |
. . 3
|
| 37 | 3 | cntoptopon 15004 |
. . . . . . . . 9
|
| 38 | resttopon 14643 |
. . . . . . . . 9
| |
| 39 | 37, 28, 38 | sylancr 414 |
. . . . . . . 8
|
| 40 | 7, 39 | eqeltrid 2292 |
. . . . . . 7
|
| 41 | topontop 14486 |
. . . . . . 7
| |
| 42 | 40, 41 | syl 14 |
. . . . . 6
|
| 43 | toponuni 14487 |
. . . . . . . 8
| |
| 44 | 40, 43 | syl 14 |
. . . . . . 7
|
| 45 | 34, 44 | sseqtrd 3231 |
. . . . . 6
|
| 46 | eqid 2205 |
. . . . . . 7
| |
| 47 | 46 | ntropn 14589 |
. . . . . 6
|
| 48 | 42, 45, 47 | syl2anc 411 |
. . . . 5
|
| 49 | xpexg 4789 |
. . . . 5
| |
| 50 | 48, 32, 49 | syl2anc 411 |
. . . 4
|
| 51 | limccl 15131 |
. . . . . . . . 9
| |
| 52 | xpss2 4786 |
. . . . . . . . 9
| |
| 53 | 51, 52 | ax-mp 5 |
. . . . . . . 8
|
| 54 | 53 | rgenw 2561 |
. . . . . . 7
|
| 55 | ss2iun 3942 |
. . . . . . 7
| |
| 56 | 54, 55 | ax-mp 5 |
. . . . . 6
|
| 57 | iunxpconst 4735 |
. . . . . 6
| |
| 58 | 56, 57 | sseqtri 3227 |
. . . . 5
|
| 59 | 58 | a1i 9 |
. . . 4
|
| 60 | 50, 59 | ssexd 4184 |
. . 3
|
| 61 | 2, 25, 27, 31, 36, 60 | ovmpodx 6072 |
. 2
|
| 62 | 61, 59 | eqsstrd 3229 |
. 2
|
| 63 | 61, 62 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-map 6737 df-pm 6738 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-xneg 9894 df-xadd 9895 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-rest 13073 df-topgen 13092 df-psmet 14305 df-xmet 14306 df-met 14307 df-bl 14308 df-mopn 14309 df-top 14470 df-topon 14483 df-bases 14515 df-ntr 14568 df-limced 15128 df-dvap 15129 |
| This theorem is referenced by: eldvap 15154 dvbssntrcntop 15156 |
| Copyright terms: Public domain | W3C validator |