ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfvalap Unicode version

Theorem dvfvalap 13365
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvval.t  |-  T  =  ( Kt  S )
dvval.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvfvalap  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Distinct variable groups:    w, A, x, z    w, F, x, z    w, S, x, z    x, T
Allowed substitution hints:    T( z, w)    K( x, z, w)

Proof of Theorem dvfvalap
Dummy variables  f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvap 13341 . . . 4  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
21a1i 9 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  _D  =  ( s  e. 
~P CC ,  f  e.  ( CC  ^pm  s )  |->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
3 dvval.k . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
43oveq1i 5860 . . . . . . 7  |-  ( Kt  s )  =  ( (
MetOpen `  ( abs  o.  -  ) )t  s )
5 simprl 526 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  s  =  S )
65oveq2d 5866 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  ( Kt  S ) )
7 dvval.t . . . . . . . 8  |-  T  =  ( Kt  S )
86, 7eqtr4di 2221 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  T )
94, 8eqtr3id 2217 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  s )  =  T )
109fveq2d 5498 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) )  =  ( int `  T
) )
11 simprr 527 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  f  =  F )
1211dmeqd 4811 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  dom  F )
13 simpl2 996 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  F : A --> CC )
1413fdmd 5352 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  F  =  A )
1512, 14eqtrd 2203 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  A )
1610, 15fveq12d 5501 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
)  =  ( ( int `  T ) `
 A ) )
1715rabeqdv 2724 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  { w  e.  dom  f  |  w #  x }  =  {
w  e.  A  |  w #  x } )
1811fveq1d 5496 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  z )  =  ( F `  z ) )
1911fveq1d 5496 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  x )  =  ( F `  x ) )
2018, 19oveq12d 5868 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( f `  z
)  -  ( f `
 x ) )  =  ( ( F `
 z )  -  ( F `  x ) ) )
2120oveq1d 5865 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( ( f `  z )  -  (
f `  x )
)  /  ( z  -  x ) )  =  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )
2217, 21mpteq12dv 4069 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
z  e.  { w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) )
2322oveq1d 5865 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
)  =  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )
2423xpeq2d 4633 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  =  ( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
2516, 24iuneq12d 3895 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
26 simpr 109 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  s  =  S )
2726oveq2d 5866 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  ( CC  ^pm  s
)  =  ( CC 
^pm  S ) )
28 simp1 992 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
29 cnex 7885 . . . . 5  |-  CC  e.  _V
3029elpw2 4141 . . . 4  |-  ( S  e.  ~P CC  <->  S  C_  CC )
3128, 30sylibr 133 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  e.  ~P CC )
3229a1i 9 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  CC  e.  _V )
33 simp2 993 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
34 simp3 994 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
35 elpm2r 6640 . . . 4  |-  ( ( ( CC  e.  _V  /\  S  e.  ~P CC )  /\  ( F : A
--> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm 
S ) )
3632, 31, 33, 34, 35syl22anc 1234 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F  e.  ( CC  ^pm  S
) )
373cntoptopon 13247 . . . . . . . . 9  |-  K  e.  (TopOn `  CC )
38 resttopon 12886 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
3937, 28, 38sylancr 412 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( Kt  S )  e.  (TopOn `  S ) )
407, 39eqeltrid 2257 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  T  e.  (TopOn `  S )
)
41 topontop 12727 . . . . . . 7  |-  ( T  e.  (TopOn `  S
)  ->  T  e.  Top )
4240, 41syl 14 . . . . . 6  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  T  e.  Top )
43 toponuni 12728 . . . . . . . 8  |-  ( T  e.  (TopOn `  S
)  ->  S  =  U. T )
4440, 43syl 14 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  =  U. T )
4534, 44sseqtrd 3185 . . . . . 6  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_ 
U. T )
46 eqid 2170 . . . . . . 7  |-  U. T  =  U. T
4746ntropn 12832 . . . . . 6  |-  ( ( T  e.  Top  /\  A  C_  U. T )  ->  ( ( int `  T ) `  A
)  e.  T )
4842, 45, 47syl2anc 409 . . . . 5  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( int `  T
) `  A )  e.  T )
49 xpexg 4723 . . . . 5  |-  ( ( ( ( int `  T
) `  A )  e.  T  /\  CC  e.  _V )  ->  ( ( ( int `  T
) `  A )  X.  CC )  e.  _V )
5048, 32, 49syl2anc 409 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( ( int `  T
) `  A )  X.  CC )  e.  _V )
51 limccl 13343 . . . . . . . . 9  |-  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC
52 xpss2 4720 . . . . . . . . 9  |-  ( ( ( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC  ->  ( { x }  X.  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  C_  ( { x }  X.  CC ) )
5351, 52ax-mp 5 . . . . . . . 8  |-  ( { x }  X.  (
( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )
5453rgenw 2525 . . . . . . 7  |-  A. x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( {
x }  X.  CC )
55 ss2iun 3886 . . . . . . 7  |-  ( A. x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )  ->  U_ x  e.  (
( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC ) )
5654, 55ax-mp 5 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )
57 iunxpconst 4669 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )  =  ( ( ( int `  T
) `  A )  X.  CC )
5856, 57sseqtri 3181 . . . . 5  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC )
5958a1i 9 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC ) )
6050, 59ssexd 4127 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V )
612, 25, 27, 31, 36, 60ovmpodx 5976 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  = 
U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
6261, 59eqsstrd 3183 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) )
6361, 62jca 304 1  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730    C_ wss 3121   ~Pcpw 3564   {csn 3581   U.cuni 3794   U_ciun 3871   class class class wbr 3987    |-> cmpt 4048    X. cxp 4607   dom cdm 4609    o. ccom 4613   -->wf 5192   ` cfv 5196  (class class class)co 5850    e. cmpo 5852    ^pm cpm 6623   CCcc 7759    - cmin 8077   # cap 8487    / cdiv 8576   abscabs 10948   ↾t crest 12565   MetOpencmopn 12700   Topctop 12710  TopOnctopon 12723   intcnt 12808   lim CC climc 13338    _D cdv 13339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-map 6624  df-pm 6625  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-xneg 9716  df-xadd 9717  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-rest 12567  df-topgen 12586  df-psmet 12702  df-xmet 12703  df-met 12704  df-bl 12705  df-mopn 12706  df-top 12711  df-topon 12724  df-bases 12756  df-ntr 12811  df-limced 13340  df-dvap 13341
This theorem is referenced by:  eldvap  13366  dvbssntrcntop  13368
  Copyright terms: Public domain W3C validator