Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvfvalap | Unicode version |
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
Ref | Expression |
---|---|
dvval.t | ↾t |
dvval.k |
Ref | Expression |
---|---|
dvfvalap | # lim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvap 13341 | . . . 4 ↾t # lim | |
2 | 1 | a1i 9 | . . 3 ↾t # lim |
3 | dvval.k | . . . . . . . 8 | |
4 | 3 | oveq1i 5860 | . . . . . . 7 ↾t ↾t |
5 | simprl 526 | . . . . . . . . 9 | |
6 | 5 | oveq2d 5866 | . . . . . . . 8 ↾t ↾t |
7 | dvval.t | . . . . . . . 8 ↾t | |
8 | 6, 7 | eqtr4di 2221 | . . . . . . 7 ↾t |
9 | 4, 8 | eqtr3id 2217 | . . . . . 6 ↾t |
10 | 9 | fveq2d 5498 | . . . . 5 ↾t |
11 | simprr 527 | . . . . . . 7 | |
12 | 11 | dmeqd 4811 | . . . . . 6 |
13 | simpl2 996 | . . . . . . 7 | |
14 | 13 | fdmd 5352 | . . . . . 6 |
15 | 12, 14 | eqtrd 2203 | . . . . 5 |
16 | 10, 15 | fveq12d 5501 | . . . 4 ↾t |
17 | 15 | rabeqdv 2724 | . . . . . . 7 # # |
18 | 11 | fveq1d 5496 | . . . . . . . . 9 |
19 | 11 | fveq1d 5496 | . . . . . . . . 9 |
20 | 18, 19 | oveq12d 5868 | . . . . . . . 8 |
21 | 20 | oveq1d 5865 | . . . . . . 7 |
22 | 17, 21 | mpteq12dv 4069 | . . . . . 6 # # |
23 | 22 | oveq1d 5865 | . . . . 5 # lim # lim |
24 | 23 | xpeq2d 4633 | . . . 4 # lim # lim |
25 | 16, 24 | iuneq12d 3895 | . . 3 ↾t # lim # lim |
26 | simpr 109 | . . . 4 | |
27 | 26 | oveq2d 5866 | . . 3 |
28 | simp1 992 | . . . 4 | |
29 | cnex 7885 | . . . . 5 | |
30 | 29 | elpw2 4141 | . . . 4 |
31 | 28, 30 | sylibr 133 | . . 3 |
32 | 29 | a1i 9 | . . . 4 |
33 | simp2 993 | . . . 4 | |
34 | simp3 994 | . . . 4 | |
35 | elpm2r 6640 | . . . 4 | |
36 | 32, 31, 33, 34, 35 | syl22anc 1234 | . . 3 |
37 | 3 | cntoptopon 13247 | . . . . . . . . 9 TopOn |
38 | resttopon 12886 | . . . . . . . . 9 TopOn ↾t TopOn | |
39 | 37, 28, 38 | sylancr 412 | . . . . . . . 8 ↾t TopOn |
40 | 7, 39 | eqeltrid 2257 | . . . . . . 7 TopOn |
41 | topontop 12727 | . . . . . . 7 TopOn | |
42 | 40, 41 | syl 14 | . . . . . 6 |
43 | toponuni 12728 | . . . . . . . 8 TopOn | |
44 | 40, 43 | syl 14 | . . . . . . 7 |
45 | 34, 44 | sseqtrd 3185 | . . . . . 6 |
46 | eqid 2170 | . . . . . . 7 | |
47 | 46 | ntropn 12832 | . . . . . 6 |
48 | 42, 45, 47 | syl2anc 409 | . . . . 5 |
49 | xpexg 4723 | . . . . 5 | |
50 | 48, 32, 49 | syl2anc 409 | . . . 4 |
51 | limccl 13343 | . . . . . . . . 9 # lim | |
52 | xpss2 4720 | . . . . . . . . 9 # lim # lim | |
53 | 51, 52 | ax-mp 5 | . . . . . . . 8 # lim |
54 | 53 | rgenw 2525 | . . . . . . 7 # lim |
55 | ss2iun 3886 | . . . . . . 7 # lim # lim | |
56 | 54, 55 | ax-mp 5 | . . . . . 6 # lim |
57 | iunxpconst 4669 | . . . . . 6 | |
58 | 56, 57 | sseqtri 3181 | . . . . 5 # lim |
59 | 58 | a1i 9 | . . . 4 # lim |
60 | 50, 59 | ssexd 4127 | . . 3 # lim |
61 | 2, 25, 27, 31, 36, 60 | ovmpodx 5976 | . 2 # lim |
62 | 61, 59 | eqsstrd 3183 | . 2 |
63 | 61, 62 | jca 304 | 1 # lim |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 crab 2452 cvv 2730 wss 3121 cpw 3564 csn 3581 cuni 3794 ciun 3871 class class class wbr 3987 cmpt 4048 cxp 4607 cdm 4609 ccom 4613 wf 5192 cfv 5196 (class class class)co 5850 cmpo 5852 cpm 6623 cc 7759 cmin 8077 # cap 8487 cdiv 8576 cabs 10948 ↾t crest 12565 cmopn 12700 ctop 12710 TopOnctopon 12723 cnt 12808 lim climc 13338 cdv 13339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-map 6624 df-pm 6625 df-sup 6957 df-inf 6958 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-xneg 9716 df-xadd 9717 df-seqfrec 10389 df-exp 10463 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-rest 12567 df-topgen 12586 df-psmet 12702 df-xmet 12703 df-met 12704 df-bl 12705 df-mopn 12706 df-top 12711 df-topon 12724 df-bases 12756 df-ntr 12811 df-limced 13340 df-dvap 13341 |
This theorem is referenced by: eldvap 13366 dvbssntrcntop 13368 |
Copyright terms: Public domain | W3C validator |