ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfvalap Unicode version

Theorem dvfvalap 15025
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvval.t  |-  T  =  ( Kt  S )
dvval.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvfvalap  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Distinct variable groups:    w, A, x, z    w, F, x, z    w, S, x, z    x, T
Allowed substitution hints:    T( z, w)    K( x, z, w)

Proof of Theorem dvfvalap
Dummy variables  f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvap 15001 . . . 4  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
21a1i 9 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  _D  =  ( s  e. 
~P CC ,  f  e.  ( CC  ^pm  s )  |->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
3 dvval.k . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
43oveq1i 5935 . . . . . . 7  |-  ( Kt  s )  =  ( (
MetOpen `  ( abs  o.  -  ) )t  s )
5 simprl 529 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  s  =  S )
65oveq2d 5941 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  ( Kt  S ) )
7 dvval.t . . . . . . . 8  |-  T  =  ( Kt  S )
86, 7eqtr4di 2247 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  T )
94, 8eqtr3id 2243 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  s )  =  T )
109fveq2d 5565 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) )  =  ( int `  T
) )
11 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  f  =  F )
1211dmeqd 4869 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  dom  F )
13 simpl2 1003 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  F : A --> CC )
1413fdmd 5417 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  F  =  A )
1512, 14eqtrd 2229 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  A )
1610, 15fveq12d 5568 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
)  =  ( ( int `  T ) `
 A ) )
1715rabeqdv 2757 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  { w  e.  dom  f  |  w #  x }  =  {
w  e.  A  |  w #  x } )
1811fveq1d 5563 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  z )  =  ( F `  z ) )
1911fveq1d 5563 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  x )  =  ( F `  x ) )
2018, 19oveq12d 5943 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( f `  z
)  -  ( f `
 x ) )  =  ( ( F `
 z )  -  ( F `  x ) ) )
2120oveq1d 5940 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( ( f `  z )  -  (
f `  x )
)  /  ( z  -  x ) )  =  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )
2217, 21mpteq12dv 4116 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
z  e.  { w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) )
2322oveq1d 5940 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
)  =  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )
2423xpeq2d 4688 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  =  ( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
2516, 24iuneq12d 3941 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
26 simpr 110 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  s  =  S )
2726oveq2d 5941 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  ( CC  ^pm  s
)  =  ( CC 
^pm  S ) )
28 simp1 999 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
29 cnex 8022 . . . . 5  |-  CC  e.  _V
3029elpw2 4191 . . . 4  |-  ( S  e.  ~P CC  <->  S  C_  CC )
3128, 30sylibr 134 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  e.  ~P CC )
3229a1i 9 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  CC  e.  _V )
33 simp2 1000 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
34 simp3 1001 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
35 elpm2r 6734 . . . 4  |-  ( ( ( CC  e.  _V  /\  S  e.  ~P CC )  /\  ( F : A
--> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm 
S ) )
3632, 31, 33, 34, 35syl22anc 1250 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F  e.  ( CC  ^pm  S
) )
373cntoptopon 14876 . . . . . . . . 9  |-  K  e.  (TopOn `  CC )
38 resttopon 14515 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
3937, 28, 38sylancr 414 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( Kt  S )  e.  (TopOn `  S ) )
407, 39eqeltrid 2283 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  T  e.  (TopOn `  S )
)
41 topontop 14358 . . . . . . 7  |-  ( T  e.  (TopOn `  S
)  ->  T  e.  Top )
4240, 41syl 14 . . . . . 6  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  T  e.  Top )
43 toponuni 14359 . . . . . . . 8  |-  ( T  e.  (TopOn `  S
)  ->  S  =  U. T )
4440, 43syl 14 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  =  U. T )
4534, 44sseqtrd 3222 . . . . . 6  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_ 
U. T )
46 eqid 2196 . . . . . . 7  |-  U. T  =  U. T
4746ntropn 14461 . . . . . 6  |-  ( ( T  e.  Top  /\  A  C_  U. T )  ->  ( ( int `  T ) `  A
)  e.  T )
4842, 45, 47syl2anc 411 . . . . 5  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( int `  T
) `  A )  e.  T )
49 xpexg 4778 . . . . 5  |-  ( ( ( ( int `  T
) `  A )  e.  T  /\  CC  e.  _V )  ->  ( ( ( int `  T
) `  A )  X.  CC )  e.  _V )
5048, 32, 49syl2anc 411 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( ( int `  T
) `  A )  X.  CC )  e.  _V )
51 limccl 15003 . . . . . . . . 9  |-  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC
52 xpss2 4775 . . . . . . . . 9  |-  ( ( ( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC  ->  ( { x }  X.  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  C_  ( { x }  X.  CC ) )
5351, 52ax-mp 5 . . . . . . . 8  |-  ( { x }  X.  (
( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )
5453rgenw 2552 . . . . . . 7  |-  A. x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( {
x }  X.  CC )
55 ss2iun 3932 . . . . . . 7  |-  ( A. x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )  ->  U_ x  e.  (
( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC ) )
5654, 55ax-mp 5 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )
57 iunxpconst 4724 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )  =  ( ( ( int `  T
) `  A )  X.  CC )
5856, 57sseqtri 3218 . . . . 5  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC )
5958a1i 9 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC ) )
6050, 59ssexd 4174 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V )
612, 25, 27, 31, 36, 60ovmpodx 6053 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  = 
U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
6261, 59eqsstrd 3220 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) )
6361, 62jca 306 1  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763    C_ wss 3157   ~Pcpw 3606   {csn 3623   U.cuni 3840   U_ciun 3917   class class class wbr 4034    |-> cmpt 4095    X. cxp 4662   dom cdm 4664    o. ccom 4668   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927    ^pm cpm 6717   CCcc 7896    - cmin 8216   # cap 8627    / cdiv 8718   abscabs 11181   ↾t crest 12943   MetOpencmopn 14175   Topctop 14341  TopOnctopon 14354   intcnt 14437   lim CC climc 14998    _D cdv 14999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pm 6719  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-limced 15000  df-dvap 15001
This theorem is referenced by:  eldvap  15026  dvbssntrcntop  15028
  Copyright terms: Public domain W3C validator