ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfvalap Unicode version

Theorem dvfvalap 13643
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvval.t  |-  T  =  ( Kt  S )
dvval.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvfvalap  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Distinct variable groups:    w, A, x, z    w, F, x, z    w, S, x, z    x, T
Allowed substitution hints:    T( z, w)    K( x, z, w)

Proof of Theorem dvfvalap
Dummy variables  f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvap 13619 . . . 4  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
21a1i 9 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  _D  =  ( s  e. 
~P CC ,  f  e.  ( CC  ^pm  s )  |->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
3 dvval.k . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
43oveq1i 5875 . . . . . . 7  |-  ( Kt  s )  =  ( (
MetOpen `  ( abs  o.  -  ) )t  s )
5 simprl 529 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  s  =  S )
65oveq2d 5881 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  ( Kt  S ) )
7 dvval.t . . . . . . . 8  |-  T  =  ( Kt  S )
86, 7eqtr4di 2226 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  T )
94, 8eqtr3id 2222 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  s )  =  T )
109fveq2d 5511 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) )  =  ( int `  T
) )
11 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  f  =  F )
1211dmeqd 4822 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  dom  F )
13 simpl2 1001 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  F : A --> CC )
1413fdmd 5364 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  F  =  A )
1512, 14eqtrd 2208 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  A )
1610, 15fveq12d 5514 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
)  =  ( ( int `  T ) `
 A ) )
1715rabeqdv 2729 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  { w  e.  dom  f  |  w #  x }  =  {
w  e.  A  |  w #  x } )
1811fveq1d 5509 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  z )  =  ( F `  z ) )
1911fveq1d 5509 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  x )  =  ( F `  x ) )
2018, 19oveq12d 5883 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( f `  z
)  -  ( f `
 x ) )  =  ( ( F `
 z )  -  ( F `  x ) ) )
2120oveq1d 5880 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( ( f `  z )  -  (
f `  x )
)  /  ( z  -  x ) )  =  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )
2217, 21mpteq12dv 4080 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
z  e.  { w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) )
2322oveq1d 5880 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
)  =  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )
2423xpeq2d 4644 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  =  ( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
2516, 24iuneq12d 3906 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
26 simpr 110 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  s  =  S )
2726oveq2d 5881 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  ( CC  ^pm  s
)  =  ( CC 
^pm  S ) )
28 simp1 997 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
29 cnex 7910 . . . . 5  |-  CC  e.  _V
3029elpw2 4152 . . . 4  |-  ( S  e.  ~P CC  <->  S  C_  CC )
3128, 30sylibr 134 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  e.  ~P CC )
3229a1i 9 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  CC  e.  _V )
33 simp2 998 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
34 simp3 999 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
35 elpm2r 6656 . . . 4  |-  ( ( ( CC  e.  _V  /\  S  e.  ~P CC )  /\  ( F : A
--> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm 
S ) )
3632, 31, 33, 34, 35syl22anc 1239 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F  e.  ( CC  ^pm  S
) )
373cntoptopon 13525 . . . . . . . . 9  |-  K  e.  (TopOn `  CC )
38 resttopon 13164 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
3937, 28, 38sylancr 414 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( Kt  S )  e.  (TopOn `  S ) )
407, 39eqeltrid 2262 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  T  e.  (TopOn `  S )
)
41 topontop 13005 . . . . . . 7  |-  ( T  e.  (TopOn `  S
)  ->  T  e.  Top )
4240, 41syl 14 . . . . . 6  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  T  e.  Top )
43 toponuni 13006 . . . . . . . 8  |-  ( T  e.  (TopOn `  S
)  ->  S  =  U. T )
4440, 43syl 14 . . . . . . 7  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  =  U. T )
4534, 44sseqtrd 3191 . . . . . 6  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_ 
U. T )
46 eqid 2175 . . . . . . 7  |-  U. T  =  U. T
4746ntropn 13110 . . . . . 6  |-  ( ( T  e.  Top  /\  A  C_  U. T )  ->  ( ( int `  T ) `  A
)  e.  T )
4842, 45, 47syl2anc 411 . . . . 5  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( int `  T
) `  A )  e.  T )
49 xpexg 4734 . . . . 5  |-  ( ( ( ( int `  T
) `  A )  e.  T  /\  CC  e.  _V )  ->  ( ( ( int `  T
) `  A )  X.  CC )  e.  _V )
5048, 32, 49syl2anc 411 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( ( int `  T
) `  A )  X.  CC )  e.  _V )
51 limccl 13621 . . . . . . . . 9  |-  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC
52 xpss2 4731 . . . . . . . . 9  |-  ( ( ( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC  ->  ( { x }  X.  ( ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  C_  ( { x }  X.  CC ) )
5351, 52ax-mp 5 . . . . . . . 8  |-  ( { x }  X.  (
( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )
5453rgenw 2530 . . . . . . 7  |-  A. x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( {
x }  X.  CC )
55 ss2iun 3897 . . . . . . 7  |-  ( A. x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )  ->  U_ x  e.  (
( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC ) )
5654, 55ax-mp 5 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )
57 iunxpconst 4680 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )  =  ( ( ( int `  T
) `  A )  X.  CC )
5856, 57sseqtri 3187 . . . . 5  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC )
5958a1i 9 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC ) )
6050, 59ssexd 4138 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V )
612, 25, 27, 31, 36, 60ovmpodx 5991 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  = 
U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
6261, 59eqsstrd 3189 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) )
6361, 62jca 306 1  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   {crab 2457   _Vcvv 2735    C_ wss 3127   ~Pcpw 3572   {csn 3589   U.cuni 3805   U_ciun 3882   class class class wbr 3998    |-> cmpt 4059    X. cxp 4618   dom cdm 4620    o. ccom 4624   -->wf 5204   ` cfv 5208  (class class class)co 5865    e. cmpo 5867    ^pm cpm 6639   CCcc 7784    - cmin 8102   # cap 8512    / cdiv 8601   abscabs 10973   ↾t crest 12609   MetOpencmopn 12978   Topctop 12988  TopOnctopon 13001   intcnt 13086   lim CC climc 13616    _D cdv 13617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-pm 6641  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-xneg 9741  df-xadd 9742  df-seqfrec 10414  df-exp 10488  df-cj 10818  df-re 10819  df-im 10820  df-rsqrt 10974  df-abs 10975  df-rest 12611  df-topgen 12630  df-psmet 12980  df-xmet 12981  df-met 12982  df-bl 12983  df-mopn 12984  df-top 12989  df-topon 13002  df-bases 13034  df-ntr 13089  df-limced 13618  df-dvap 13619
This theorem is referenced by:  eldvap  13644  dvbssntrcntop  13646
  Copyright terms: Public domain W3C validator