Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvfvalap | Unicode version |
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
Ref | Expression |
---|---|
dvval.t | ↾t |
dvval.k |
Ref | Expression |
---|---|
dvfvalap | # lim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvap 13619 | . . . 4 ↾t # lim | |
2 | 1 | a1i 9 | . . 3 ↾t # lim |
3 | dvval.k | . . . . . . . 8 | |
4 | 3 | oveq1i 5875 | . . . . . . 7 ↾t ↾t |
5 | simprl 529 | . . . . . . . . 9 | |
6 | 5 | oveq2d 5881 | . . . . . . . 8 ↾t ↾t |
7 | dvval.t | . . . . . . . 8 ↾t | |
8 | 6, 7 | eqtr4di 2226 | . . . . . . 7 ↾t |
9 | 4, 8 | eqtr3id 2222 | . . . . . 6 ↾t |
10 | 9 | fveq2d 5511 | . . . . 5 ↾t |
11 | simprr 531 | . . . . . . 7 | |
12 | 11 | dmeqd 4822 | . . . . . 6 |
13 | simpl2 1001 | . . . . . . 7 | |
14 | 13 | fdmd 5364 | . . . . . 6 |
15 | 12, 14 | eqtrd 2208 | . . . . 5 |
16 | 10, 15 | fveq12d 5514 | . . . 4 ↾t |
17 | 15 | rabeqdv 2729 | . . . . . . 7 # # |
18 | 11 | fveq1d 5509 | . . . . . . . . 9 |
19 | 11 | fveq1d 5509 | . . . . . . . . 9 |
20 | 18, 19 | oveq12d 5883 | . . . . . . . 8 |
21 | 20 | oveq1d 5880 | . . . . . . 7 |
22 | 17, 21 | mpteq12dv 4080 | . . . . . 6 # # |
23 | 22 | oveq1d 5880 | . . . . 5 # lim # lim |
24 | 23 | xpeq2d 4644 | . . . 4 # lim # lim |
25 | 16, 24 | iuneq12d 3906 | . . 3 ↾t # lim # lim |
26 | simpr 110 | . . . 4 | |
27 | 26 | oveq2d 5881 | . . 3 |
28 | simp1 997 | . . . 4 | |
29 | cnex 7910 | . . . . 5 | |
30 | 29 | elpw2 4152 | . . . 4 |
31 | 28, 30 | sylibr 134 | . . 3 |
32 | 29 | a1i 9 | . . . 4 |
33 | simp2 998 | . . . 4 | |
34 | simp3 999 | . . . 4 | |
35 | elpm2r 6656 | . . . 4 | |
36 | 32, 31, 33, 34, 35 | syl22anc 1239 | . . 3 |
37 | 3 | cntoptopon 13525 | . . . . . . . . 9 TopOn |
38 | resttopon 13164 | . . . . . . . . 9 TopOn ↾t TopOn | |
39 | 37, 28, 38 | sylancr 414 | . . . . . . . 8 ↾t TopOn |
40 | 7, 39 | eqeltrid 2262 | . . . . . . 7 TopOn |
41 | topontop 13005 | . . . . . . 7 TopOn | |
42 | 40, 41 | syl 14 | . . . . . 6 |
43 | toponuni 13006 | . . . . . . . 8 TopOn | |
44 | 40, 43 | syl 14 | . . . . . . 7 |
45 | 34, 44 | sseqtrd 3191 | . . . . . 6 |
46 | eqid 2175 | . . . . . . 7 | |
47 | 46 | ntropn 13110 | . . . . . 6 |
48 | 42, 45, 47 | syl2anc 411 | . . . . 5 |
49 | xpexg 4734 | . . . . 5 | |
50 | 48, 32, 49 | syl2anc 411 | . . . 4 |
51 | limccl 13621 | . . . . . . . . 9 # lim | |
52 | xpss2 4731 | . . . . . . . . 9 # lim # lim | |
53 | 51, 52 | ax-mp 5 | . . . . . . . 8 # lim |
54 | 53 | rgenw 2530 | . . . . . . 7 # lim |
55 | ss2iun 3897 | . . . . . . 7 # lim # lim | |
56 | 54, 55 | ax-mp 5 | . . . . . 6 # lim |
57 | iunxpconst 4680 | . . . . . 6 | |
58 | 56, 57 | sseqtri 3187 | . . . . 5 # lim |
59 | 58 | a1i 9 | . . . 4 # lim |
60 | 50, 59 | ssexd 4138 | . . 3 # lim |
61 | 2, 25, 27, 31, 36, 60 | ovmpodx 5991 | . 2 # lim |
62 | 61, 59 | eqsstrd 3189 | . 2 |
63 | 61, 62 | jca 306 | 1 # lim |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 crab 2457 cvv 2735 wss 3127 cpw 3572 csn 3589 cuni 3805 ciun 3882 class class class wbr 3998 cmpt 4059 cxp 4618 cdm 4620 ccom 4624 wf 5204 cfv 5208 (class class class)co 5865 cmpo 5867 cpm 6639 cc 7784 cmin 8102 # cap 8512 cdiv 8601 cabs 10973 ↾t crest 12609 cmopn 12978 ctop 12988 TopOnctopon 13001 cnt 13086 lim climc 13616 cdv 13617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-map 6640 df-pm 6641 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-n0 9148 df-z 9225 df-uz 9500 df-q 9591 df-rp 9623 df-xneg 9741 df-xadd 9742 df-seqfrec 10414 df-exp 10488 df-cj 10818 df-re 10819 df-im 10820 df-rsqrt 10974 df-abs 10975 df-rest 12611 df-topgen 12630 df-psmet 12980 df-xmet 12981 df-met 12982 df-bl 12983 df-mopn 12984 df-top 12989 df-topon 13002 df-bases 13034 df-ntr 13089 df-limced 13618 df-dvap 13619 |
This theorem is referenced by: eldvap 13644 dvbssntrcntop 13646 |
Copyright terms: Public domain | W3C validator |