![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iuneq12d | GIF version |
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
iuneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iuneq12d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | iuneq1d 3935 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
3 | iuneq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
5 | 4 | iuneq2dv 3933 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
6 | 2, 5 | eqtrd 2226 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∪ ciun 3912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-iun 3914 |
This theorem is referenced by: rdgivallem 6434 rdgon 6439 rdg0 6440 imasival 12889 reldvg 14833 dvfvalap 14835 |
Copyright terms: Public domain | W3C validator |