ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon Unicode version

Theorem rdgon 6133
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.)
Hypotheses
Ref Expression
rdgon.2  |-  ( ph  ->  A  e.  On )
rdgon.3  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
Assertion
Ref Expression
rdgon  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Distinct variable groups:    x, A    x, B    x, F    ph, x

Proof of Theorem rdgon
Dummy variables  f  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6117 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2 funmpt 5038 . . 3  |-  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )
32a1i 9 . 2  |-  ( (
ph  /\  B  e.  On )  ->  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
4 ordon 4293 . . 3  |-  Ord  On
54a1i 9 . 2  |-  ( (
ph  /\  B  e.  On )  ->  Ord  On )
6 vex 2622 . . . 4  |-  f  e. 
_V
7 rdgon.2 . . . . . . 7  |-  ( ph  ->  A  e.  On )
87adantr 270 . . . . . 6  |-  ( (
ph  /\  B  e.  On )  ->  A  e.  On )
983ad2ant1 964 . . . . 5  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A  e.  On )
106dmex 4687 . . . . . 6  |-  dom  f  e.  _V
11 fveq2 5289 . . . . . . . . . 10  |-  ( x  =  ( f `  z )  ->  ( F `  x )  =  ( F `  ( f `  z
) ) )
1211eleq1d 2156 . . . . . . . . 9  |-  ( x  =  ( f `  z )  ->  (
( F `  x
)  e.  On  <->  ( F `  ( f `  z
) )  e.  On ) )
13 rdgon.3 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
1413adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  On )  ->  A. x  e.  On  ( F `  x )  e.  On )
15143ad2ant1 964 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. x  e.  On  ( F `  x )  e.  On )
1615adantr 270 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  ->  A. x  e.  On  ( F `  x )  e.  On )
17 simpl3 948 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
f : y --> On )
18 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
z  e.  dom  f
)
19 fdm 5152 . . . . . . . . . . . . 13  |-  ( f : y --> On  ->  dom  f  =  y )
2019eleq2d 2157 . . . . . . . . . . . 12  |-  ( f : y --> On  ->  ( z  e.  dom  f  <->  z  e.  y ) )
2117, 20syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( z  e.  dom  f 
<->  z  e.  y ) )
2218, 21mpbid 145 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
z  e.  y )
2317, 22ffvelrnd 5419 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( f `  z
)  e.  On )
2412, 16, 23rspcdva 2727 . . . . . . . 8  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( F `  (
f `  z )
)  e.  On )
2524ralrimiva 2446 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. z  e.  dom  f ( F `  ( f `  z
) )  e.  On )
26 fveq2 5289 . . . . . . . . . 10  |-  ( x  =  z  ->  (
f `  x )  =  ( f `  z ) )
2726fveq2d 5293 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  ( f `  x ) )  =  ( F `  (
f `  z )
) )
2827eleq1d 2156 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  (
f `  x )
)  e.  On  <->  ( F `  ( f `  z
) )  e.  On ) )
2928cbvralv 2590 . . . . . . 7  |-  ( A. x  e.  dom  f ( F `  ( f `
 x ) )  e.  On  <->  A. z  e.  dom  f ( F `
 ( f `  z ) )  e.  On )
3025, 29sylibr 132 . . . . . 6  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
31 iunon 6031 . . . . . 6  |-  ( ( dom  f  e.  _V  /\ 
A. x  e.  dom  f ( F `  ( f `  x
) )  e.  On )  ->  U_ x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
3210, 30, 31sylancr 405 . . . . 5  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  U_ x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
33 onun2 4297 . . . . 5  |-  ( ( A  e.  On  /\  U_ x  e.  dom  f
( F `  (
f `  x )
)  e.  On )  ->  ( A  u.  U_ x  e.  dom  f
( F `  (
f `  x )
) )  e.  On )
349, 32, 33syl2anc 403 . . . 4  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( A  u.  U_ x  e.  dom  f ( F `  ( f `
 x ) ) )  e.  On )
35 dmeq 4624 . . . . . . 7  |-  ( g  =  f  ->  dom  g  =  dom  f )
36 fveq1 5288 . . . . . . . 8  |-  ( g  =  f  ->  (
g `  x )  =  ( f `  x ) )
3736fveq2d 5293 . . . . . . 7  |-  ( g  =  f  ->  ( F `  ( g `  x ) )  =  ( F `  (
f `  x )
) )
3835, 37iuneq12d 3749 . . . . . 6  |-  ( g  =  f  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  = 
U_ x  e.  dom  f ( F `  ( f `  x
) ) )
3938uneq2d 3152 . . . . 5  |-  ( g  =  f  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( A  u.  U_ x  e.  dom  f
( F `  (
f `  x )
) ) )
40 eqid 2088 . . . . 5  |-  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )
4139, 40fvmptg 5364 . . . 4  |-  ( ( f  e.  _V  /\  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) )  e.  On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  =  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) ) )
426, 34, 41sylancr 405 . . 3  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  =  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) ) )
4342, 34eqeltrd 2164 . 2  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  e.  On )
44 unon 4318 . . . . . 6  |-  U. On  =  On
4544eleq2i 2154 . . . . 5  |-  ( y  e.  U. On  <->  y  e.  On )
4645biimpi 118 . . . 4  |-  ( y  e.  U. On  ->  y  e.  On )
4746adantl 271 . . 3  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  U. On )  -> 
y  e.  On )
48 suceloni 4308 . . 3  |-  ( y  e.  On  ->  suc  y  e.  On )
4947, 48syl 14 . 2  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  U. On )  ->  suc  y  e.  On )
5044eleq2i 2154 . . . 4  |-  ( B  e.  U. On  <->  B  e.  On )
5150biimpri 131 . . 3  |-  ( B  e.  On  ->  B  e.  U. On )
5251adantl 271 . 2  |-  ( (
ph  /\  B  e.  On )  ->  B  e. 
U. On )
531, 3, 5, 43, 49, 52tfrcl 6111 1  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   _Vcvv 2619    u. cun 2995   U.cuni 3648   U_ciun 3725    |-> cmpt 3891   Ord word 4180   Oncon0 4181   suc csuc 4183   dom cdm 4428   Fun wfun 4996   -->wf 4998   ` cfv 5002   reccrdg 6116
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-recs 6052  df-irdg 6117
This theorem is referenced by:  oacl  6203  omcl  6204  oeicl  6205
  Copyright terms: Public domain W3C validator