| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgon | Unicode version | ||
| Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.) |
| Ref | Expression |
|---|---|
| rdgon.2 |
|
| rdgon.3 |
|
| Ref | Expression |
|---|---|
| rdgon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-irdg 6516 |
. 2
| |
| 2 | funmpt 5356 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | ordon 4578 |
. . 3
| |
| 5 | 4 | a1i 9 |
. 2
|
| 6 | vex 2802 |
. . . 4
| |
| 7 | rdgon.2 |
. . . . . . 7
| |
| 8 | 7 | adantr 276 |
. . . . . 6
|
| 9 | 8 | 3ad2ant1 1042 |
. . . . 5
|
| 10 | 6 | dmex 4991 |
. . . . . 6
|
| 11 | fveq2 5627 |
. . . . . . . . . 10
| |
| 12 | 11 | eleq1d 2298 |
. . . . . . . . 9
|
| 13 | rdgon.3 |
. . . . . . . . . . . 12
| |
| 14 | 13 | adantr 276 |
. . . . . . . . . . 11
|
| 15 | 14 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | simpl3 1026 |
. . . . . . . . . 10
| |
| 18 | simpr 110 |
. . . . . . . . . . 11
| |
| 19 | fdm 5479 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | eleq2d 2299 |
. . . . . . . . . . . 12
|
| 21 | 17, 20 | syl 14 |
. . . . . . . . . . 11
|
| 22 | 18, 21 | mpbid 147 |
. . . . . . . . . 10
|
| 23 | 17, 22 | ffvelcdmd 5771 |
. . . . . . . . 9
|
| 24 | 12, 16, 23 | rspcdva 2912 |
. . . . . . . 8
|
| 25 | 24 | ralrimiva 2603 |
. . . . . . 7
|
| 26 | fveq2 5627 |
. . . . . . . . . 10
| |
| 27 | 26 | fveq2d 5631 |
. . . . . . . . 9
|
| 28 | 27 | eleq1d 2298 |
. . . . . . . 8
|
| 29 | 28 | cbvralv 2765 |
. . . . . . 7
|
| 30 | 25, 29 | sylibr 134 |
. . . . . 6
|
| 31 | iunon 6430 |
. . . . . 6
| |
| 32 | 10, 30, 31 | sylancr 414 |
. . . . 5
|
| 33 | onun2 4582 |
. . . . 5
| |
| 34 | 9, 32, 33 | syl2anc 411 |
. . . 4
|
| 35 | dmeq 4923 |
. . . . . . 7
| |
| 36 | fveq1 5626 |
. . . . . . . 8
| |
| 37 | 36 | fveq2d 5631 |
. . . . . . 7
|
| 38 | 35, 37 | iuneq12d 3989 |
. . . . . 6
|
| 39 | 38 | uneq2d 3358 |
. . . . 5
|
| 40 | eqid 2229 |
. . . . 5
| |
| 41 | 39, 40 | fvmptg 5710 |
. . . 4
|
| 42 | 6, 34, 41 | sylancr 414 |
. . 3
|
| 43 | 42, 34 | eqeltrd 2306 |
. 2
|
| 44 | unon 4603 |
. . . . . 6
| |
| 45 | 44 | eleq2i 2296 |
. . . . 5
|
| 46 | 45 | biimpi 120 |
. . . 4
|
| 47 | 46 | adantl 277 |
. . 3
|
| 48 | onsuc 4593 |
. . 3
| |
| 49 | 47, 48 | syl 14 |
. 2
|
| 50 | 44 | eleq2i 2296 |
. . . 4
|
| 51 | 50 | biimpri 133 |
. . 3
|
| 52 | 51 | adantl 277 |
. 2
|
| 53 | 1, 3, 5, 43, 49, 52 | tfrcl 6510 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-recs 6451 df-irdg 6516 |
| This theorem is referenced by: oacl 6606 omcl 6607 oeicl 6608 |
| Copyright terms: Public domain | W3C validator |