ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon Unicode version

Theorem rdgon 6387
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
Hypotheses
Ref Expression
rdgon.2  |-  ( ph  ->  A  e.  On )
rdgon.3  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
Assertion
Ref Expression
rdgon  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Distinct variable groups:    x, A    x, B    x, F    ph, x

Proof of Theorem rdgon
Dummy variables  f  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6371 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2 funmpt 5255 . . 3  |-  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )
32a1i 9 . 2  |-  ( (
ph  /\  B  e.  On )  ->  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
4 ordon 4486 . . 3  |-  Ord  On
54a1i 9 . 2  |-  ( (
ph  /\  B  e.  On )  ->  Ord  On )
6 vex 2741 . . . 4  |-  f  e. 
_V
7 rdgon.2 . . . . . . 7  |-  ( ph  ->  A  e.  On )
87adantr 276 . . . . . 6  |-  ( (
ph  /\  B  e.  On )  ->  A  e.  On )
983ad2ant1 1018 . . . . 5  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A  e.  On )
106dmex 4894 . . . . . 6  |-  dom  f  e.  _V
11 fveq2 5516 . . . . . . . . . 10  |-  ( x  =  ( f `  z )  ->  ( F `  x )  =  ( F `  ( f `  z
) ) )
1211eleq1d 2246 . . . . . . . . 9  |-  ( x  =  ( f `  z )  ->  (
( F `  x
)  e.  On  <->  ( F `  ( f `  z
) )  e.  On ) )
13 rdgon.3 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
1413adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  On )  ->  A. x  e.  On  ( F `  x )  e.  On )
15143ad2ant1 1018 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. x  e.  On  ( F `  x )  e.  On )
1615adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  ->  A. x  e.  On  ( F `  x )  e.  On )
17 simpl3 1002 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
f : y --> On )
18 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
z  e.  dom  f
)
19 fdm 5372 . . . . . . . . . . . . 13  |-  ( f : y --> On  ->  dom  f  =  y )
2019eleq2d 2247 . . . . . . . . . . . 12  |-  ( f : y --> On  ->  ( z  e.  dom  f  <->  z  e.  y ) )
2117, 20syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( z  e.  dom  f 
<->  z  e.  y ) )
2218, 21mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
z  e.  y )
2317, 22ffvelcdmd 5653 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( f `  z
)  e.  On )
2412, 16, 23rspcdva 2847 . . . . . . . 8  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( F `  (
f `  z )
)  e.  On )
2524ralrimiva 2550 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. z  e.  dom  f ( F `  ( f `  z
) )  e.  On )
26 fveq2 5516 . . . . . . . . . 10  |-  ( x  =  z  ->  (
f `  x )  =  ( f `  z ) )
2726fveq2d 5520 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  ( f `  x ) )  =  ( F `  (
f `  z )
) )
2827eleq1d 2246 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  (
f `  x )
)  e.  On  <->  ( F `  ( f `  z
) )  e.  On ) )
2928cbvralv 2704 . . . . . . 7  |-  ( A. x  e.  dom  f ( F `  ( f `
 x ) )  e.  On  <->  A. z  e.  dom  f ( F `
 ( f `  z ) )  e.  On )
3025, 29sylibr 134 . . . . . 6  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
31 iunon 6285 . . . . . 6  |-  ( ( dom  f  e.  _V  /\ 
A. x  e.  dom  f ( F `  ( f `  x
) )  e.  On )  ->  U_ x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
3210, 30, 31sylancr 414 . . . . 5  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  U_ x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
33 onun2 4490 . . . . 5  |-  ( ( A  e.  On  /\  U_ x  e.  dom  f
( F `  (
f `  x )
)  e.  On )  ->  ( A  u.  U_ x  e.  dom  f
( F `  (
f `  x )
) )  e.  On )
349, 32, 33syl2anc 411 . . . 4  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( A  u.  U_ x  e.  dom  f ( F `  ( f `
 x ) ) )  e.  On )
35 dmeq 4828 . . . . . . 7  |-  ( g  =  f  ->  dom  g  =  dom  f )
36 fveq1 5515 . . . . . . . 8  |-  ( g  =  f  ->  (
g `  x )  =  ( f `  x ) )
3736fveq2d 5520 . . . . . . 7  |-  ( g  =  f  ->  ( F `  ( g `  x ) )  =  ( F `  (
f `  x )
) )
3835, 37iuneq12d 3911 . . . . . 6  |-  ( g  =  f  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  = 
U_ x  e.  dom  f ( F `  ( f `  x
) ) )
3938uneq2d 3290 . . . . 5  |-  ( g  =  f  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( A  u.  U_ x  e.  dom  f
( F `  (
f `  x )
) ) )
40 eqid 2177 . . . . 5  |-  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )
4139, 40fvmptg 5593 . . . 4  |-  ( ( f  e.  _V  /\  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) )  e.  On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  =  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) ) )
426, 34, 41sylancr 414 . . 3  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  =  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) ) )
4342, 34eqeltrd 2254 . 2  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  e.  On )
44 unon 4511 . . . . . 6  |-  U. On  =  On
4544eleq2i 2244 . . . . 5  |-  ( y  e.  U. On  <->  y  e.  On )
4645biimpi 120 . . . 4  |-  ( y  e.  U. On  ->  y  e.  On )
4746adantl 277 . . 3  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  U. On )  -> 
y  e.  On )
48 onsuc 4501 . . 3  |-  ( y  e.  On  ->  suc  y  e.  On )
4947, 48syl 14 . 2  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  U. On )  ->  suc  y  e.  On )
5044eleq2i 2244 . . . 4  |-  ( B  e.  U. On  <->  B  e.  On )
5150biimpri 133 . . 3  |-  ( B  e.  On  ->  B  e.  U. On )
5251adantl 277 . 2  |-  ( (
ph  /\  B  e.  On )  ->  B  e. 
U. On )
531, 3, 5, 43, 49, 52tfrcl 6365 1  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2738    u. cun 3128   U.cuni 3810   U_ciun 3887    |-> cmpt 4065   Ord word 4363   Oncon0 4364   suc csuc 4366   dom cdm 4627   Fun wfun 5211   -->wf 5213   ` cfv 5217   reccrdg 6370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-recs 6306  df-irdg 6371
This theorem is referenced by:  oacl  6461  omcl  6462  oeicl  6463
  Copyright terms: Public domain W3C validator