Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgon | Unicode version |
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.) |
Ref | Expression |
---|---|
rdgon.2 | |
rdgon.3 |
Ref | Expression |
---|---|
rdgon |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-irdg 6338 | . 2 recs | |
2 | funmpt 5226 | . . 3 | |
3 | 2 | a1i 9 | . 2 |
4 | ordon 4463 | . . 3 | |
5 | 4 | a1i 9 | . 2 |
6 | vex 2729 | . . . 4 | |
7 | rdgon.2 | . . . . . . 7 | |
8 | 7 | adantr 274 | . . . . . 6 |
9 | 8 | 3ad2ant1 1008 | . . . . 5 |
10 | 6 | dmex 4870 | . . . . . 6 |
11 | fveq2 5486 | . . . . . . . . . 10 | |
12 | 11 | eleq1d 2235 | . . . . . . . . 9 |
13 | rdgon.3 | . . . . . . . . . . . 12 | |
14 | 13 | adantr 274 | . . . . . . . . . . 11 |
15 | 14 | 3ad2ant1 1008 | . . . . . . . . . 10 |
16 | 15 | adantr 274 | . . . . . . . . 9 |
17 | simpl3 992 | . . . . . . . . . 10 | |
18 | simpr 109 | . . . . . . . . . . 11 | |
19 | fdm 5343 | . . . . . . . . . . . . 13 | |
20 | 19 | eleq2d 2236 | . . . . . . . . . . . 12 |
21 | 17, 20 | syl 14 | . . . . . . . . . . 11 |
22 | 18, 21 | mpbid 146 | . . . . . . . . . 10 |
23 | 17, 22 | ffvelrnd 5621 | . . . . . . . . 9 |
24 | 12, 16, 23 | rspcdva 2835 | . . . . . . . 8 |
25 | 24 | ralrimiva 2539 | . . . . . . 7 |
26 | fveq2 5486 | . . . . . . . . . 10 | |
27 | 26 | fveq2d 5490 | . . . . . . . . 9 |
28 | 27 | eleq1d 2235 | . . . . . . . 8 |
29 | 28 | cbvralv 2692 | . . . . . . 7 |
30 | 25, 29 | sylibr 133 | . . . . . 6 |
31 | iunon 6252 | . . . . . 6 | |
32 | 10, 30, 31 | sylancr 411 | . . . . 5 |
33 | onun2 4467 | . . . . 5 | |
34 | 9, 32, 33 | syl2anc 409 | . . . 4 |
35 | dmeq 4804 | . . . . . . 7 | |
36 | fveq1 5485 | . . . . . . . 8 | |
37 | 36 | fveq2d 5490 | . . . . . . 7 |
38 | 35, 37 | iuneq12d 3890 | . . . . . 6 |
39 | 38 | uneq2d 3276 | . . . . 5 |
40 | eqid 2165 | . . . . 5 | |
41 | 39, 40 | fvmptg 5562 | . . . 4 |
42 | 6, 34, 41 | sylancr 411 | . . 3 |
43 | 42, 34 | eqeltrd 2243 | . 2 |
44 | unon 4488 | . . . . . 6 | |
45 | 44 | eleq2i 2233 | . . . . 5 |
46 | 45 | biimpi 119 | . . . 4 |
47 | 46 | adantl 275 | . . 3 |
48 | suceloni 4478 | . . 3 | |
49 | 47, 48 | syl 14 | . 2 |
50 | 44 | eleq2i 2233 | . . . 4 |
51 | 50 | biimpri 132 | . . 3 |
52 | 51 | adantl 275 | . 2 |
53 | 1, 3, 5, 43, 49, 52 | tfrcl 6332 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 cvv 2726 cun 3114 cuni 3789 ciun 3866 cmpt 4043 word 4340 con0 4341 csuc 4343 cdm 4604 wfun 5182 wf 5184 cfv 5188 crdg 6337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-recs 6273 df-irdg 6338 |
This theorem is referenced by: oacl 6428 omcl 6429 oeicl 6430 |
Copyright terms: Public domain | W3C validator |