| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgon | Unicode version | ||
| Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.) |
| Ref | Expression |
|---|---|
| rdgon.2 |
|
| rdgon.3 |
|
| Ref | Expression |
|---|---|
| rdgon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-irdg 6456 |
. 2
| |
| 2 | funmpt 5309 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | ordon 4534 |
. . 3
| |
| 5 | 4 | a1i 9 |
. 2
|
| 6 | vex 2775 |
. . . 4
| |
| 7 | rdgon.2 |
. . . . . . 7
| |
| 8 | 7 | adantr 276 |
. . . . . 6
|
| 9 | 8 | 3ad2ant1 1021 |
. . . . 5
|
| 10 | 6 | dmex 4945 |
. . . . . 6
|
| 11 | fveq2 5576 |
. . . . . . . . . 10
| |
| 12 | 11 | eleq1d 2274 |
. . . . . . . . 9
|
| 13 | rdgon.3 |
. . . . . . . . . . . 12
| |
| 14 | 13 | adantr 276 |
. . . . . . . . . . 11
|
| 15 | 14 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | simpl3 1005 |
. . . . . . . . . 10
| |
| 18 | simpr 110 |
. . . . . . . . . . 11
| |
| 19 | fdm 5431 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | eleq2d 2275 |
. . . . . . . . . . . 12
|
| 21 | 17, 20 | syl 14 |
. . . . . . . . . . 11
|
| 22 | 18, 21 | mpbid 147 |
. . . . . . . . . 10
|
| 23 | 17, 22 | ffvelcdmd 5716 |
. . . . . . . . 9
|
| 24 | 12, 16, 23 | rspcdva 2882 |
. . . . . . . 8
|
| 25 | 24 | ralrimiva 2579 |
. . . . . . 7
|
| 26 | fveq2 5576 |
. . . . . . . . . 10
| |
| 27 | 26 | fveq2d 5580 |
. . . . . . . . 9
|
| 28 | 27 | eleq1d 2274 |
. . . . . . . 8
|
| 29 | 28 | cbvralv 2738 |
. . . . . . 7
|
| 30 | 25, 29 | sylibr 134 |
. . . . . 6
|
| 31 | iunon 6370 |
. . . . . 6
| |
| 32 | 10, 30, 31 | sylancr 414 |
. . . . 5
|
| 33 | onun2 4538 |
. . . . 5
| |
| 34 | 9, 32, 33 | syl2anc 411 |
. . . 4
|
| 35 | dmeq 4878 |
. . . . . . 7
| |
| 36 | fveq1 5575 |
. . . . . . . 8
| |
| 37 | 36 | fveq2d 5580 |
. . . . . . 7
|
| 38 | 35, 37 | iuneq12d 3951 |
. . . . . 6
|
| 39 | 38 | uneq2d 3327 |
. . . . 5
|
| 40 | eqid 2205 |
. . . . 5
| |
| 41 | 39, 40 | fvmptg 5655 |
. . . 4
|
| 42 | 6, 34, 41 | sylancr 414 |
. . 3
|
| 43 | 42, 34 | eqeltrd 2282 |
. 2
|
| 44 | unon 4559 |
. . . . . 6
| |
| 45 | 44 | eleq2i 2272 |
. . . . 5
|
| 46 | 45 | biimpi 120 |
. . . 4
|
| 47 | 46 | adantl 277 |
. . 3
|
| 48 | onsuc 4549 |
. . 3
| |
| 49 | 47, 48 | syl 14 |
. 2
|
| 50 | 44 | eleq2i 2272 |
. . . 4
|
| 51 | 50 | biimpri 133 |
. . 3
|
| 52 | 51 | adantl 277 |
. 2
|
| 53 | 1, 3, 5, 43, 49, 52 | tfrcl 6450 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-recs 6391 df-irdg 6456 |
| This theorem is referenced by: oacl 6546 omcl 6547 oeicl 6548 |
| Copyright terms: Public domain | W3C validator |