ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon Unicode version

Theorem rdgon 6439
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
Hypotheses
Ref Expression
rdgon.2  |-  ( ph  ->  A  e.  On )
rdgon.3  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
Assertion
Ref Expression
rdgon  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Distinct variable groups:    x, A    x, B    x, F    ph, x

Proof of Theorem rdgon
Dummy variables  f  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6423 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2 funmpt 5292 . . 3  |-  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )
32a1i 9 . 2  |-  ( (
ph  /\  B  e.  On )  ->  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
4 ordon 4518 . . 3  |-  Ord  On
54a1i 9 . 2  |-  ( (
ph  /\  B  e.  On )  ->  Ord  On )
6 vex 2763 . . . 4  |-  f  e. 
_V
7 rdgon.2 . . . . . . 7  |-  ( ph  ->  A  e.  On )
87adantr 276 . . . . . 6  |-  ( (
ph  /\  B  e.  On )  ->  A  e.  On )
983ad2ant1 1020 . . . . 5  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A  e.  On )
106dmex 4928 . . . . . 6  |-  dom  f  e.  _V
11 fveq2 5554 . . . . . . . . . 10  |-  ( x  =  ( f `  z )  ->  ( F `  x )  =  ( F `  ( f `  z
) ) )
1211eleq1d 2262 . . . . . . . . 9  |-  ( x  =  ( f `  z )  ->  (
( F `  x
)  e.  On  <->  ( F `  ( f `  z
) )  e.  On ) )
13 rdgon.3 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
1413adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  On )  ->  A. x  e.  On  ( F `  x )  e.  On )
15143ad2ant1 1020 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. x  e.  On  ( F `  x )  e.  On )
1615adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  ->  A. x  e.  On  ( F `  x )  e.  On )
17 simpl3 1004 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
f : y --> On )
18 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
z  e.  dom  f
)
19 fdm 5409 . . . . . . . . . . . . 13  |-  ( f : y --> On  ->  dom  f  =  y )
2019eleq2d 2263 . . . . . . . . . . . 12  |-  ( f : y --> On  ->  ( z  e.  dom  f  <->  z  e.  y ) )
2117, 20syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( z  e.  dom  f 
<->  z  e.  y ) )
2218, 21mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
z  e.  y )
2317, 22ffvelcdmd 5694 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( f `  z
)  e.  On )
2412, 16, 23rspcdva 2869 . . . . . . . 8  |-  ( ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  /\  z  e. 
dom  f )  -> 
( F `  (
f `  z )
)  e.  On )
2524ralrimiva 2567 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. z  e.  dom  f ( F `  ( f `  z
) )  e.  On )
26 fveq2 5554 . . . . . . . . . 10  |-  ( x  =  z  ->  (
f `  x )  =  ( f `  z ) )
2726fveq2d 5558 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  ( f `  x ) )  =  ( F `  (
f `  z )
) )
2827eleq1d 2262 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  (
f `  x )
)  e.  On  <->  ( F `  ( f `  z
) )  e.  On ) )
2928cbvralv 2726 . . . . . . 7  |-  ( A. x  e.  dom  f ( F `  ( f `
 x ) )  e.  On  <->  A. z  e.  dom  f ( F `
 ( f `  z ) )  e.  On )
3025, 29sylibr 134 . . . . . 6  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  A. x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
31 iunon 6337 . . . . . 6  |-  ( ( dom  f  e.  _V  /\ 
A. x  e.  dom  f ( F `  ( f `  x
) )  e.  On )  ->  U_ x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
3210, 30, 31sylancr 414 . . . . 5  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  ->  U_ x  e.  dom  f ( F `  ( f `  x
) )  e.  On )
33 onun2 4522 . . . . 5  |-  ( ( A  e.  On  /\  U_ x  e.  dom  f
( F `  (
f `  x )
)  e.  On )  ->  ( A  u.  U_ x  e.  dom  f
( F `  (
f `  x )
) )  e.  On )
349, 32, 33syl2anc 411 . . . 4  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( A  u.  U_ x  e.  dom  f ( F `  ( f `
 x ) ) )  e.  On )
35 dmeq 4862 . . . . . . 7  |-  ( g  =  f  ->  dom  g  =  dom  f )
36 fveq1 5553 . . . . . . . 8  |-  ( g  =  f  ->  (
g `  x )  =  ( f `  x ) )
3736fveq2d 5558 . . . . . . 7  |-  ( g  =  f  ->  ( F `  ( g `  x ) )  =  ( F `  (
f `  x )
) )
3835, 37iuneq12d 3936 . . . . . 6  |-  ( g  =  f  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  = 
U_ x  e.  dom  f ( F `  ( f `  x
) ) )
3938uneq2d 3313 . . . . 5  |-  ( g  =  f  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( A  u.  U_ x  e.  dom  f
( F `  (
f `  x )
) ) )
40 eqid 2193 . . . . 5  |-  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )
4139, 40fvmptg 5633 . . . 4  |-  ( ( f  e.  _V  /\  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) )  e.  On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  =  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) ) )
426, 34, 41sylancr 414 . . 3  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  =  ( A  u.  U_ x  e.  dom  f ( F `
 ( f `  x ) ) ) )
4342, 34eqeltrd 2270 . 2  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  On  /\  f : y --> On )  -> 
( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  e.  On )
44 unon 4543 . . . . . 6  |-  U. On  =  On
4544eleq2i 2260 . . . . 5  |-  ( y  e.  U. On  <->  y  e.  On )
4645biimpi 120 . . . 4  |-  ( y  e.  U. On  ->  y  e.  On )
4746adantl 277 . . 3  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  U. On )  -> 
y  e.  On )
48 onsuc 4533 . . 3  |-  ( y  e.  On  ->  suc  y  e.  On )
4947, 48syl 14 . 2  |-  ( ( ( ph  /\  B  e.  On )  /\  y  e.  U. On )  ->  suc  y  e.  On )
5044eleq2i 2260 . . . 4  |-  ( B  e.  U. On  <->  B  e.  On )
5150biimpri 133 . . 3  |-  ( B  e.  On  ->  B  e.  U. On )
5251adantl 277 . 2  |-  ( (
ph  /\  B  e.  On )  ->  B  e. 
U. On )
531, 3, 5, 43, 49, 52tfrcl 6417 1  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    u. cun 3151   U.cuni 3835   U_ciun 3912    |-> cmpt 4090   Ord word 4393   Oncon0 4394   suc csuc 4396   dom cdm 4659   Fun wfun 5248   -->wf 5250   ` cfv 5254   reccrdg 6422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358  df-irdg 6423
This theorem is referenced by:  oacl  6513  omcl  6514  oeicl  6515
  Copyright terms: Public domain W3C validator