Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgon | Unicode version |
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.) |
Ref | Expression |
---|---|
rdgon.2 | |
rdgon.3 |
Ref | Expression |
---|---|
rdgon |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-irdg 6347 | . 2 recs | |
2 | funmpt 5234 | . . 3 | |
3 | 2 | a1i 9 | . 2 |
4 | ordon 4468 | . . 3 | |
5 | 4 | a1i 9 | . 2 |
6 | vex 2733 | . . . 4 | |
7 | rdgon.2 | . . . . . . 7 | |
8 | 7 | adantr 274 | . . . . . 6 |
9 | 8 | 3ad2ant1 1013 | . . . . 5 |
10 | 6 | dmex 4875 | . . . . . 6 |
11 | fveq2 5494 | . . . . . . . . . 10 | |
12 | 11 | eleq1d 2239 | . . . . . . . . 9 |
13 | rdgon.3 | . . . . . . . . . . . 12 | |
14 | 13 | adantr 274 | . . . . . . . . . . 11 |
15 | 14 | 3ad2ant1 1013 | . . . . . . . . . 10 |
16 | 15 | adantr 274 | . . . . . . . . 9 |
17 | simpl3 997 | . . . . . . . . . 10 | |
18 | simpr 109 | . . . . . . . . . . 11 | |
19 | fdm 5351 | . . . . . . . . . . . . 13 | |
20 | 19 | eleq2d 2240 | . . . . . . . . . . . 12 |
21 | 17, 20 | syl 14 | . . . . . . . . . . 11 |
22 | 18, 21 | mpbid 146 | . . . . . . . . . 10 |
23 | 17, 22 | ffvelrnd 5630 | . . . . . . . . 9 |
24 | 12, 16, 23 | rspcdva 2839 | . . . . . . . 8 |
25 | 24 | ralrimiva 2543 | . . . . . . 7 |
26 | fveq2 5494 | . . . . . . . . . 10 | |
27 | 26 | fveq2d 5498 | . . . . . . . . 9 |
28 | 27 | eleq1d 2239 | . . . . . . . 8 |
29 | 28 | cbvralv 2696 | . . . . . . 7 |
30 | 25, 29 | sylibr 133 | . . . . . 6 |
31 | iunon 6261 | . . . . . 6 | |
32 | 10, 30, 31 | sylancr 412 | . . . . 5 |
33 | onun2 4472 | . . . . 5 | |
34 | 9, 32, 33 | syl2anc 409 | . . . 4 |
35 | dmeq 4809 | . . . . . . 7 | |
36 | fveq1 5493 | . . . . . . . 8 | |
37 | 36 | fveq2d 5498 | . . . . . . 7 |
38 | 35, 37 | iuneq12d 3895 | . . . . . 6 |
39 | 38 | uneq2d 3281 | . . . . 5 |
40 | eqid 2170 | . . . . 5 | |
41 | 39, 40 | fvmptg 5570 | . . . 4 |
42 | 6, 34, 41 | sylancr 412 | . . 3 |
43 | 42, 34 | eqeltrd 2247 | . 2 |
44 | unon 4493 | . . . . . 6 | |
45 | 44 | eleq2i 2237 | . . . . 5 |
46 | 45 | biimpi 119 | . . . 4 |
47 | 46 | adantl 275 | . . 3 |
48 | suceloni 4483 | . . 3 | |
49 | 47, 48 | syl 14 | . 2 |
50 | 44 | eleq2i 2237 | . . . 4 |
51 | 50 | biimpri 132 | . . 3 |
52 | 51 | adantl 275 | . 2 |
53 | 1, 3, 5, 43, 49, 52 | tfrcl 6341 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 cvv 2730 cun 3119 cuni 3794 ciun 3871 cmpt 4048 word 4345 con0 4346 csuc 4348 cdm 4609 wfun 5190 wf 5192 cfv 5196 crdg 6346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-recs 6282 df-irdg 6347 |
This theorem is referenced by: oacl 6437 omcl 6438 oeicl 6439 |
Copyright terms: Public domain | W3C validator |