| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldvg | Unicode version | ||
| Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.) |
| Ref | Expression |
|---|---|
| reldvg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | cnex 8020 |
. . . . . 6
| |
| 3 | 2 | elpw2 4191 |
. . . . 5
|
| 4 | 1, 3 | sylibr 134 |
. . . 4
|
| 5 | simpr 110 |
. . . 4
| |
| 6 | eqid 2196 |
. . . . . . . . . 10
| |
| 7 | 6 | cntoptop 14853 |
. . . . . . . . 9
|
| 8 | 7 | a1i 9 |
. . . . . . . 8
|
| 9 | 4 | elexd 2776 |
. . . . . . . 8
|
| 10 | resttop 14490 |
. . . . . . . 8
| |
| 11 | 8, 9, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | elpmi 6735 |
. . . . . . . . . 10
| |
| 13 | 12 | simprd 114 |
. . . . . . . . 9
|
| 14 | 13 | adantl 277 |
. . . . . . . 8
|
| 15 | 6 | cntoptopon 14852 |
. . . . . . . . . . 11
|
| 16 | 15 | toponunii 14337 |
. . . . . . . . . 10
|
| 17 | 16 | restuni 14492 |
. . . . . . . . 9
|
| 18 | 8, 1, 17 | syl2anc 411 |
. . . . . . . 8
|
| 19 | 14, 18 | sseqtrd 3222 |
. . . . . . 7
|
| 20 | eqid 2196 |
. . . . . . . 8
| |
| 21 | 20 | ntrss3 14443 |
. . . . . . 7
|
| 22 | 11, 19, 21 | syl2anc 411 |
. . . . . 6
|
| 23 | uniexg 4475 |
. . . . . . 7
| |
| 24 | elpw2g 4190 |
. . . . . . 7
| |
| 25 | 11, 23, 24 | 3syl 17 |
. . . . . 6
|
| 26 | 22, 25 | mpbird 167 |
. . . . 5
|
| 27 | vex 2766 |
. . . . . . . . 9
| |
| 28 | 27 | snex 4219 |
. . . . . . . 8
|
| 29 | limccl 14979 |
. . . . . . . . 9
| |
| 30 | 2, 29 | ssexi 4172 |
. . . . . . . 8
|
| 31 | 28, 30 | xpex 4779 |
. . . . . . 7
|
| 32 | 31 | rgenw 2552 |
. . . . . 6
|
| 33 | 32 | a1i 9 |
. . . . 5
|
| 34 | iunexg 6185 |
. . . . 5
| |
| 35 | 26, 33, 34 | syl2anc 411 |
. . . 4
|
| 36 | simpl 109 |
. . . . . . . . 9
| |
| 37 | 36 | oveq2d 5941 |
. . . . . . . 8
|
| 38 | 37 | fveq2d 5565 |
. . . . . . 7
|
| 39 | dmeq 4867 |
. . . . . . . 8
| |
| 40 | 39 | adantl 277 |
. . . . . . 7
|
| 41 | 38, 40 | fveq12d 5568 |
. . . . . 6
|
| 42 | 40 | rabeqdv 2757 |
. . . . . . . . 9
|
| 43 | fveq1 5560 |
. . . . . . . . . . . 12
| |
| 44 | 43 | adantl 277 |
. . . . . . . . . . 11
|
| 45 | fveq1 5560 |
. . . . . . . . . . . 12
| |
| 46 | 45 | adantl 277 |
. . . . . . . . . . 11
|
| 47 | 44, 46 | oveq12d 5943 |
. . . . . . . . . 10
|
| 48 | 47 | oveq1d 5940 |
. . . . . . . . 9
|
| 49 | 42, 48 | mpteq12dv 4116 |
. . . . . . . 8
|
| 50 | 49 | oveq1d 5940 |
. . . . . . 7
|
| 51 | 50 | xpeq2d 4688 |
. . . . . 6
|
| 52 | 41, 51 | iuneq12d 3941 |
. . . . 5
|
| 53 | oveq2 5933 |
. . . . 5
| |
| 54 | df-dvap 14977 |
. . . . 5
| |
| 55 | 52, 53, 54 | ovmpox 6055 |
. . . 4
|
| 56 | 4, 5, 35, 55 | syl3anc 1249 |
. . 3
|
| 57 | relxp 4773 |
. . . . . 6
| |
| 58 | 57 | rgenw 2552 |
. . . . 5
|
| 59 | reliun 4785 |
. . . . 5
| |
| 60 | 58, 59 | mpbir 146 |
. . . 4
|
| 61 | df-rel 4671 |
. . . 4
| |
| 62 | 60, 61 | mpbi 145 |
. . 3
|
| 63 | 56, 62 | eqsstrdi 3236 |
. 2
|
| 64 | df-rel 4671 |
. 2
| |
| 65 | 63, 64 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-pm 6719 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-limced 14976 df-dvap 14977 |
| This theorem is referenced by: dvfgg 15008 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvmulxxbr 15022 dviaddf 15025 dvimulf 15026 dvcoapbr 15027 |
| Copyright terms: Public domain | W3C validator |