ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvg Unicode version

Theorem reldvg 13442
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
Assertion
Ref Expression
reldvg  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )

Proof of Theorem reldvg
Dummy variables  f  s  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  C_  CC )
2 cnex 7898 . . . . . 6  |-  CC  e.  _V
32elpw2 4143 . . . . 5  |-  ( S  e.  ~P CC  <->  S  C_  CC )
41, 3sylibr 133 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  e.  ~P CC )
5 simpr 109 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  F  e.  ( CC  ^pm  S
) )
6 eqid 2170 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
76cntoptop 13327 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
87a1i 9 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( MetOpen
`  ( abs  o.  -  ) )  e. 
Top )
94elexd 2743 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  e.  _V )
10 resttop 12964 . . . . . . . 8  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  S  e.  _V )  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
118, 9, 10syl2anc 409 . . . . . . 7  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top )
12 elpmi 6645 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  S )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
1312simprd 113 . . . . . . . . 9  |-  ( F  e.  ( CC  ^pm  S )  ->  dom  F  C_  S )
1413adantl 275 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  S )
156cntoptopon 13326 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
1615toponunii 12809 . . . . . . . . . 10  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
1716restuni 12966 . . . . . . . . 9  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  S  C_  CC )  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
188, 1, 17syl2anc 409 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
1914, 18sseqtrd 3185 . . . . . . 7  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
20 eqid 2170 . . . . . . . 8  |-  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  =  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S )
2120ntrss3 12917 . . . . . . 7  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
2211, 19, 21syl2anc 409 . . . . . 6  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
23 uniexg 4424 . . . . . . 7  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top  ->  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  _V )
24 elpw2g 4142 . . . . . . 7  |-  ( U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  _V  ->  ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  <->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) )
2511, 23, 243syl 17 . . . . . 6  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  <->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) )
2622, 25mpbird 166 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
27 vex 2733 . . . . . . . . 9  |-  x  e. 
_V
2827snex 4171 . . . . . . . 8  |-  { x }  e.  _V
29 limccl 13422 . . . . . . . . 9  |-  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC
302, 29ssexi 4127 . . . . . . . 8  |-  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  e. 
_V
3128, 30xpex 4726 . . . . . . 7  |-  ( { x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V
3231rgenw 2525 . . . . . 6  |-  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V
3332a1i 9 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
34 iunexg 6098 . . . . 5  |-  ( ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  /\  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )  ->  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
3526, 33, 34syl2anc 409 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
36 simpl 108 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  s  =  S )
3736oveq2d 5869 . . . . . . . 8  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( MetOpen `  ( abs  o.  -  ) )t  s )  =  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) )
3837fveq2d 5500 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) )  =  ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
39 dmeq 4811 . . . . . . . 8  |-  ( f  =  F  ->  dom  f  =  dom  F )
4039adantl 275 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  dom  f  =  dom  F )
4138, 40fveq12d 5503 . . . . . 6  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
)  =  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
) )
4240rabeqdv 2724 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  { w  e.  dom  f  |  w #  x }  =  { w  e.  dom  F  |  w #  x } )
43 fveq1 5495 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
4443adantl 275 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  f  =  F )  ->  ( f `  z
)  =  ( F `
 z ) )
45 fveq1 5495 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4645adantl 275 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  f  =  F )  ->  ( f `  x
)  =  ( F `
 x ) )
4744, 46oveq12d 5871 . . . . . . . . . 10  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( f `  z )  -  (
f `  x )
)  =  ( ( F `  z )  -  ( F `  x ) ) )
4847oveq1d 5868 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) )  =  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
4942, 48mpteq12dv 4071 . . . . . . . 8  |-  ( ( s  =  S  /\  f  =  F )  ->  ( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) )  =  ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) )
5049oveq1d 5868 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
5150xpeq2d 4635 . . . . . 6  |-  ( ( s  =  S  /\  f  =  F )  ->  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  =  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
5241, 51iuneq12d 3897 . . . . 5  |-  ( ( s  =  S  /\  f  =  F )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  =  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
53 oveq2 5861 . . . . 5  |-  ( s  =  S  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S
) )
54 df-dvap 13420 . . . . 5  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
5552, 53, 54ovmpox 5981 . . . 4  |-  ( ( S  e.  ~P CC  /\  F  e.  ( CC 
^pm  S )  /\  U_ x  e.  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )  -> 
( S  _D  F
)  =  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
564, 5, 35, 55syl3anc 1233 . . 3  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  = 
U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
57 relxp 4720 . . . . . 6  |-  Rel  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
5857rgenw 2525 . . . . 5  |-  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) Rel  ( {
x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
59 reliun 4732 . . . . 5  |-  ( Rel  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  <->  A. x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) Rel  ( {
x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
6058, 59mpbir 145 . . . 4  |-  Rel  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )
61 df-rel 4618 . . . 4  |-  ( Rel  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  <->  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( _V  X.  _V ) )
6260, 61mpbi 144 . . 3  |-  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( _V  X.  _V )
6356, 62eqsstrdi 3199 . 2  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  C_  ( _V  X.  _V )
)
64 df-rel 4618 . 2  |-  ( Rel  ( S  _D  F
)  <->  ( S  _D  F )  C_  ( _V  X.  _V ) )
6563, 64sylibr 133 1  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566   {csn 3583   U.cuni 3796   U_ciun 3873   class class class wbr 3989    |-> cmpt 4050    X. cxp 4609   dom cdm 4611    o. ccom 4615   Rel wrel 4616   -->wf 5194   ` cfv 5198  (class class class)co 5853    ^pm cpm 6627   CCcc 7772    - cmin 8090   # cap 8500    / cdiv 8589   abscabs 10961   ↾t crest 12579   MetOpencmopn 12779   Topctop 12789   intcnt 12887   lim CC climc 13417    _D cdv 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pm 6629  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-limced 13419  df-dvap 13420
This theorem is referenced by:  dvfgg  13451  dvidlemap  13454  dvmulxxbr  13460  dviaddf  13463  dvimulf  13464  dvcoapbr  13465
  Copyright terms: Public domain W3C validator