ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvg Unicode version

Theorem reldvg 15266
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
Assertion
Ref Expression
reldvg  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )

Proof of Theorem reldvg
Dummy variables  f  s  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  C_  CC )
2 cnex 8084 . . . . . 6  |-  CC  e.  _V
32elpw2 4217 . . . . 5  |-  ( S  e.  ~P CC  <->  S  C_  CC )
41, 3sylibr 134 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  e.  ~P CC )
5 simpr 110 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  F  e.  ( CC  ^pm  S
) )
6 eqid 2207 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
76cntoptop 15120 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
87a1i 9 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( MetOpen
`  ( abs  o.  -  ) )  e. 
Top )
94elexd 2790 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  e.  _V )
10 resttop 14757 . . . . . . . 8  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  S  e.  _V )  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
118, 9, 10syl2anc 411 . . . . . . 7  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top )
12 elpmi 6777 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  S )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
1312simprd 114 . . . . . . . . 9  |-  ( F  e.  ( CC  ^pm  S )  ->  dom  F  C_  S )
1413adantl 277 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  S )
156cntoptopon 15119 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
1615toponunii 14604 . . . . . . . . . 10  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
1716restuni 14759 . . . . . . . . 9  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  S  C_  CC )  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
188, 1, 17syl2anc 411 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
1914, 18sseqtrd 3239 . . . . . . 7  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
20 eqid 2207 . . . . . . . 8  |-  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  =  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S )
2120ntrss3 14710 . . . . . . 7  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
2211, 19, 21syl2anc 411 . . . . . 6  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
23 uniexg 4504 . . . . . . 7  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top  ->  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  _V )
24 elpw2g 4216 . . . . . . 7  |-  ( U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  _V  ->  ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  <->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) )
2511, 23, 243syl 17 . . . . . 6  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  <->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) )
2622, 25mpbird 167 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
27 vex 2779 . . . . . . . . 9  |-  x  e. 
_V
2827snex 4245 . . . . . . . 8  |-  { x }  e.  _V
29 limccl 15246 . . . . . . . . 9  |-  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC
302, 29ssexi 4198 . . . . . . . 8  |-  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  e. 
_V
3128, 30xpex 4808 . . . . . . 7  |-  ( { x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V
3231rgenw 2563 . . . . . 6  |-  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V
3332a1i 9 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
34 iunexg 6227 . . . . 5  |-  ( ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  /\  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )  ->  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
3526, 33, 34syl2anc 411 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
36 simpl 109 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  s  =  S )
3736oveq2d 5983 . . . . . . . 8  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( MetOpen `  ( abs  o.  -  ) )t  s )  =  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) )
3837fveq2d 5603 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) )  =  ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
39 dmeq 4897 . . . . . . . 8  |-  ( f  =  F  ->  dom  f  =  dom  F )
4039adantl 277 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  dom  f  =  dom  F )
4138, 40fveq12d 5606 . . . . . 6  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
)  =  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
) )
4240rabeqdv 2770 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  { w  e.  dom  f  |  w #  x }  =  { w  e.  dom  F  |  w #  x } )
43 fveq1 5598 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
4443adantl 277 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  f  =  F )  ->  ( f `  z
)  =  ( F `
 z ) )
45 fveq1 5598 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4645adantl 277 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  f  =  F )  ->  ( f `  x
)  =  ( F `
 x ) )
4744, 46oveq12d 5985 . . . . . . . . . 10  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( f `  z )  -  (
f `  x )
)  =  ( ( F `  z )  -  ( F `  x ) ) )
4847oveq1d 5982 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) )  =  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
4942, 48mpteq12dv 4142 . . . . . . . 8  |-  ( ( s  =  S  /\  f  =  F )  ->  ( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) )  =  ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) )
5049oveq1d 5982 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
5150xpeq2d 4717 . . . . . 6  |-  ( ( s  =  S  /\  f  =  F )  ->  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  =  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
5241, 51iuneq12d 3965 . . . . 5  |-  ( ( s  =  S  /\  f  =  F )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  =  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
53 oveq2 5975 . . . . 5  |-  ( s  =  S  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S
) )
54 df-dvap 15244 . . . . 5  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
5552, 53, 54ovmpox 6097 . . . 4  |-  ( ( S  e.  ~P CC  /\  F  e.  ( CC 
^pm  S )  /\  U_ x  e.  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )  -> 
( S  _D  F
)  =  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
564, 5, 35, 55syl3anc 1250 . . 3  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  = 
U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
57 relxp 4802 . . . . . 6  |-  Rel  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
5857rgenw 2563 . . . . 5  |-  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) Rel  ( {
x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
59 reliun 4814 . . . . 5  |-  ( Rel  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  <->  A. x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) Rel  ( {
x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
6058, 59mpbir 146 . . . 4  |-  Rel  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )
61 df-rel 4700 . . . 4  |-  ( Rel  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  <->  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( _V  X.  _V ) )
6260, 61mpbi 145 . . 3  |-  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( _V  X.  _V )
6356, 62eqsstrdi 3253 . 2  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  C_  ( _V  X.  _V )
)
64 df-rel 4700 . 2  |-  ( Rel  ( S  _D  F
)  <->  ( S  _D  F )  C_  ( _V  X.  _V ) )
6563, 64sylibr 134 1  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626   {csn 3643   U.cuni 3864   U_ciun 3941   class class class wbr 4059    |-> cmpt 4121    X. cxp 4691   dom cdm 4693    o. ccom 4697   Rel wrel 4698   -->wf 5286   ` cfv 5290  (class class class)co 5967    ^pm cpm 6759   CCcc 7958    - cmin 8278   # cap 8689    / cdiv 8780   abscabs 11423   ↾t crest 13186   MetOpencmopn 14418   Topctop 14584   intcnt 14680   lim CC climc 15241    _D cdv 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-limced 15243  df-dvap 15244
This theorem is referenced by:  dvfgg  15275  dvidlemap  15278  dvidrelem  15279  dvidsslem  15280  dvmulxxbr  15289  dviaddf  15292  dvimulf  15293  dvcoapbr  15294
  Copyright terms: Public domain W3C validator