ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvg Unicode version

Theorem reldvg 14444
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
Assertion
Ref Expression
reldvg  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )

Proof of Theorem reldvg
Dummy variables  f  s  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  C_  CC )
2 cnex 7949 . . . . . 6  |-  CC  e.  _V
32elpw2 4169 . . . . 5  |-  ( S  e.  ~P CC  <->  S  C_  CC )
41, 3sylibr 134 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  e.  ~P CC )
5 simpr 110 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  F  e.  ( CC  ^pm  S
) )
6 eqid 2187 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
76cntoptop 14329 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
87a1i 9 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( MetOpen
`  ( abs  o.  -  ) )  e. 
Top )
94elexd 2762 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  e.  _V )
10 resttop 13966 . . . . . . . 8  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  S  e.  _V )  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
118, 9, 10syl2anc 411 . . . . . . 7  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top )
12 elpmi 6681 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  S )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
1312simprd 114 . . . . . . . . 9  |-  ( F  e.  ( CC  ^pm  S )  ->  dom  F  C_  S )
1413adantl 277 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  S )
156cntoptopon 14328 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
1615toponunii 13813 . . . . . . . . . 10  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
1716restuni 13968 . . . . . . . . 9  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  S  C_  CC )  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
188, 1, 17syl2anc 411 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
1914, 18sseqtrd 3205 . . . . . . 7  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
20 eqid 2187 . . . . . . . 8  |-  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  =  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S )
2120ntrss3 13919 . . . . . . 7  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
2211, 19, 21syl2anc 411 . . . . . 6  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
23 uniexg 4451 . . . . . . 7  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top  ->  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  _V )
24 elpw2g 4168 . . . . . . 7  |-  ( U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  _V  ->  ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  <->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) )
2511, 23, 243syl 17 . . . . . 6  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  <->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F )  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) )
2622, 25mpbird 167 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
27 vex 2752 . . . . . . . . 9  |-  x  e. 
_V
2827snex 4197 . . . . . . . 8  |-  { x }  e.  _V
29 limccl 14424 . . . . . . . . 9  |-  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC
302, 29ssexi 4153 . . . . . . . 8  |-  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  e. 
_V
3128, 30xpex 4753 . . . . . . 7  |-  ( { x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V
3231rgenw 2542 . . . . . 6  |-  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V
3332a1i 9 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
34 iunexg 6134 . . . . 5  |-  ( ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ~P U. ( ( MetOpen `  ( abs  o.  -  ) )t  S )  /\  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )  ->  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
3526, 33, 34syl2anc 411 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )
36 simpl 109 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  s  =  S )
3736oveq2d 5904 . . . . . . . 8  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( MetOpen `  ( abs  o.  -  ) )t  s )  =  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) )
3837fveq2d 5531 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) )  =  ( int `  ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
39 dmeq 4839 . . . . . . . 8  |-  ( f  =  F  ->  dom  f  =  dom  F )
4039adantl 277 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  dom  f  =  dom  F )
4138, 40fveq12d 5534 . . . . . 6  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
)  =  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
) )
4240rabeqdv 2743 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  { w  e.  dom  f  |  w #  x }  =  { w  e.  dom  F  |  w #  x } )
43 fveq1 5526 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
4443adantl 277 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  f  =  F )  ->  ( f `  z
)  =  ( F `
 z ) )
45 fveq1 5526 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4645adantl 277 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  f  =  F )  ->  ( f `  x
)  =  ( F `
 x ) )
4744, 46oveq12d 5906 . . . . . . . . . 10  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( f `  z )  -  (
f `  x )
)  =  ( ( F `  z )  -  ( F `  x ) ) )
4847oveq1d 5903 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) )  =  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
4942, 48mpteq12dv 4097 . . . . . . . 8  |-  ( ( s  =  S  /\  f  =  F )  ->  ( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) )  =  ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) )
5049oveq1d 5903 . . . . . . 7  |-  ( ( s  =  S  /\  f  =  F )  ->  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
5150xpeq2d 4662 . . . . . 6  |-  ( ( s  =  S  /\  f  =  F )  ->  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  f  |  w #  x }  |->  ( ( ( f `  z )  -  ( f `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) )  =  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
5241, 51iuneq12d 3922 . . . . 5  |-  ( ( s  =  S  /\  f  =  F )  ->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  =  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
53 oveq2 5896 . . . . 5  |-  ( s  =  S  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S
) )
54 df-dvap 14422 . . . . 5  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  s ) ) `  dom  f
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  f  |  w #  x }  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
5552, 53, 54ovmpox 6017 . . . 4  |-  ( ( S  e.  ~P CC  /\  F  e.  ( CC 
^pm  S )  /\  U_ x  e.  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  e.  _V )  -> 
( S  _D  F
)  =  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
564, 5, 35, 55syl3anc 1248 . . 3  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  = 
U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
57 relxp 4747 . . . . . 6  |-  Rel  ( { x }  X.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
5857rgenw 2542 . . . . 5  |-  A. x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) Rel  ( {
x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
59 reliun 4759 . . . . 5  |-  ( Rel  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  <->  A. x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) Rel  ( {
x }  X.  (
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
6058, 59mpbir 146 . . . 4  |-  Rel  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )
61 df-rel 4645 . . . 4  |-  ( Rel  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  <->  U_ x  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( _V  X.  _V ) )
6260, 61mpbi 145 . . 3  |-  U_ x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) ( { x }  X.  ( ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( _V  X.  _V )
6356, 62eqsstrdi 3219 . 2  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  C_  ( _V  X.  _V )
)
64 df-rel 4645 . 2  |-  ( Rel  ( S  _D  F
)  <->  ( S  _D  F )  C_  ( _V  X.  _V ) )
6563, 64sylibr 134 1  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   A.wral 2465   {crab 2469   _Vcvv 2749    C_ wss 3141   ~Pcpw 3587   {csn 3604   U.cuni 3821   U_ciun 3898   class class class wbr 4015    |-> cmpt 4076    X. cxp 4636   dom cdm 4638    o. ccom 4642   Rel wrel 4643   -->wf 5224   ` cfv 5228  (class class class)co 5888    ^pm cpm 6663   CCcc 7823    - cmin 8142   # cap 8552    / cdiv 8643   abscabs 11020   ↾t crest 12706   MetOpencmopn 13727   Topctop 13793   intcnt 13889   lim CC climc 14419    _D cdv 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-map 6664  df-pm 6665  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-xneg 9786  df-xadd 9787  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-rest 12708  df-topgen 12727  df-psmet 13729  df-xmet 13730  df-met 13731  df-bl 13732  df-mopn 13733  df-top 13794  df-topon 13807  df-bases 13839  df-ntr 13892  df-limced 14421  df-dvap 14422
This theorem is referenced by:  dvfgg  14453  dvidlemap  14456  dvmulxxbr  14462  dviaddf  14465  dvimulf  14466  dvcoapbr  14467
  Copyright terms: Public domain W3C validator