ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2 GIF version

Theorem iuneq2 3943
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
iuneq2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iuneq2
StepHypRef Expression
1 ss2iun 3942 . . 3 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
2 ss2iun 3942 . . 3 (∀𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐵)
31, 2anim12i 338 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵) → ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵))
4 eqss 3208 . . . 4 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
54ralbii 2512 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 ↔ ∀𝑥𝐴 (𝐵𝐶𝐶𝐵))
6 r19.26 2632 . . 3 (∀𝑥𝐴 (𝐵𝐶𝐶𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
75, 6bitri 184 . 2 (∀𝑥𝐴 𝐵 = 𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
8 eqss 3208 . 2 ( 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶 ↔ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵))
93, 7, 83imtr4i 201 1 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wral 2484  wss 3166   ciun 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-iun 3929
This theorem is referenced by:  iuneq2i  3945  iuneq2dv  3948  dfmptg  5759
  Copyright terms: Public domain W3C validator