ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmptg Unicode version

Theorem dfmptg 5664
Description: Alternate definition for the maps-to notation df-mpt 4045 (which requires that  B be a set). (Contributed by Jim Kingdon, 9-Jan-2019.)
Assertion
Ref Expression
dfmptg  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. } )

Proof of Theorem dfmptg
StepHypRef Expression
1 dfmpt3 5310 . 2  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)
2 vex 2729 . . . . 5  |-  x  e. 
_V
3 xpsng 5660 . . . . 5  |-  ( ( x  e.  _V  /\  B  e.  V )  ->  ( { x }  X.  { B } )  =  { <. x ,  B >. } )
42, 3mpan 421 . . . 4  |-  ( B  e.  V  ->  ( { x }  X.  { B } )  =  { <. x ,  B >. } )
54ralimi 2529 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  ( {
x }  X.  { B } )  =  { <. x ,  B >. } )
6 iuneq2 3882 . . 3  |-  ( A. x  e.  A  ( { x }  X.  { B } )  =  { <. x ,  B >. }  ->  U_ x  e.  A  ( { x }  X.  { B }
)  =  U_ x  e.  A  { <. x ,  B >. } )
75, 6syl 14 . 2  |-  ( A. x  e.  A  B  e.  V  ->  U_ x  e.  A  ( {
x }  X.  { B } )  =  U_ x  e.  A  { <. x ,  B >. } )
81, 7syl5eq 2211 1  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726   {csn 3576   <.cop 3579   U_ciun 3866    |-> cmpt 4043    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  fnasrng  5665
  Copyright terms: Public domain W3C validator