ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopn Unicode version

Theorem iunopn 14474
Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iunopn  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  e.  J )
Distinct variable groups:    x, A    x, J
Allowed substitution hint:    B( x)

Proof of Theorem iunopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3959 . . 3  |-  ( A. x  e.  A  B  e.  J  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
21adantl 277 . 2  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
3 uniiunlem 3282 . . . 4  |-  ( A. x  e.  A  B  e.  J  ->  ( A. x  e.  A  B  e.  J  <->  { y  |  E. x  e.  A  y  =  B }  C_  J
) )
43ibi 176 . . 3  |-  ( A. x  e.  A  B  e.  J  ->  { y  |  E. x  e.  A  y  =  B }  C_  J )
5 uniopn 14473 . . 3  |-  ( ( J  e.  Top  /\  { y  |  E. x  e.  A  y  =  B }  C_  J )  ->  U. { y  |  E. x  e.  A  y  =  B }  e.  J )
64, 5sylan2 286 . 2  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U. {
y  |  E. x  e.  A  y  =  B }  e.  J
)
72, 6eqeltrd 2282 1  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485    C_ wss 3166   U.cuni 3850   U_ciun 3927   Topctop 14469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851  df-iun 3929  df-top 14470
This theorem is referenced by:  tgcn  14680
  Copyright terms: Public domain W3C validator