ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopn Unicode version

Theorem iunopn 12794
Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iunopn  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  e.  J )
Distinct variable groups:    x, A    x, J
Allowed substitution hint:    B( x)

Proof of Theorem iunopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3905 . . 3  |-  ( A. x  e.  A  B  e.  J  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
21adantl 275 . 2  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
3 uniiunlem 3236 . . . 4  |-  ( A. x  e.  A  B  e.  J  ->  ( A. x  e.  A  B  e.  J  <->  { y  |  E. x  e.  A  y  =  B }  C_  J
) )
43ibi 175 . . 3  |-  ( A. x  e.  A  B  e.  J  ->  { y  |  E. x  e.  A  y  =  B }  C_  J )
5 uniopn 12793 . . 3  |-  ( ( J  e.  Top  /\  { y  |  E. x  e.  A  y  =  B }  C_  J )  ->  U. { y  |  E. x  e.  A  y  =  B }  e.  J )
64, 5sylan2 284 . 2  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U. {
y  |  E. x  e.  A  y  =  B }  e.  J
)
72, 6eqeltrd 2247 1  |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  ->  U_ x  e.  A  B  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449    C_ wss 3121   U.cuni 3796   U_ciun 3873   Topctop 12789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797  df-iun 3875  df-top 12790
This theorem is referenced by:  tgcn  13002
  Copyright terms: Public domain W3C validator