| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniopn | Unicode version | ||
| Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| uniopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg 14319 |
. . . . 5
| |
| 2 | 1 | ibi 176 |
. . . 4
|
| 3 | 2 | simpld 112 |
. . 3
|
| 4 | elpw2g 4190 |
. . . . . . . 8
| |
| 5 | 4 | biimpar 297 |
. . . . . . 7
|
| 6 | sseq1 3207 |
. . . . . . . . 9
| |
| 7 | unieq 3849 |
. . . . . . . . . 10
| |
| 8 | 7 | eleq1d 2265 |
. . . . . . . . 9
|
| 9 | 6, 8 | imbi12d 234 |
. . . . . . . 8
|
| 10 | 9 | spcgv 2851 |
. . . . . . 7
|
| 11 | 5, 10 | syl 14 |
. . . . . 6
|
| 12 | 11 | com23 78 |
. . . . 5
|
| 13 | 12 | ex 115 |
. . . 4
|
| 14 | 13 | pm2.43d 50 |
. . 3
|
| 15 | 3, 14 | mpid 42 |
. 2
|
| 16 | 15 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-uni 3841 df-top 14318 |
| This theorem is referenced by: iunopn 14322 unopn 14325 0opn 14326 topopn 14328 tgtop 14388 ntropn 14437 neipsm 14474 unimopn 14806 metrest 14826 cnopncntop 14864 cnopn 14865 |
| Copyright terms: Public domain | W3C validator |