| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniopn | Unicode version | ||
| Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| uniopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg 14471 |
. . . . 5
| |
| 2 | 1 | ibi 176 |
. . . 4
|
| 3 | 2 | simpld 112 |
. . 3
|
| 4 | elpw2g 4200 |
. . . . . . . 8
| |
| 5 | 4 | biimpar 297 |
. . . . . . 7
|
| 6 | sseq1 3216 |
. . . . . . . . 9
| |
| 7 | unieq 3859 |
. . . . . . . . . 10
| |
| 8 | 7 | eleq1d 2274 |
. . . . . . . . 9
|
| 9 | 6, 8 | imbi12d 234 |
. . . . . . . 8
|
| 10 | 9 | spcgv 2860 |
. . . . . . 7
|
| 11 | 5, 10 | syl 14 |
. . . . . 6
|
| 12 | 11 | com23 78 |
. . . . 5
|
| 13 | 12 | ex 115 |
. . . 4
|
| 14 | 13 | pm2.43d 50 |
. . 3
|
| 15 | 3, 14 | mpid 42 |
. 2
|
| 16 | 15 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-uni 3851 df-top 14470 |
| This theorem is referenced by: iunopn 14474 unopn 14477 0opn 14478 topopn 14480 tgtop 14540 ntropn 14589 neipsm 14626 unimopn 14958 metrest 14978 cnopncntop 15016 cnopn 15017 |
| Copyright terms: Public domain | W3C validator |