| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniopn | Unicode version | ||
| Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| uniopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg 14673 |
. . . . 5
| |
| 2 | 1 | ibi 176 |
. . . 4
|
| 3 | 2 | simpld 112 |
. . 3
|
| 4 | elpw2g 4240 |
. . . . . . . 8
| |
| 5 | 4 | biimpar 297 |
. . . . . . 7
|
| 6 | sseq1 3247 |
. . . . . . . . 9
| |
| 7 | unieq 3897 |
. . . . . . . . . 10
| |
| 8 | 7 | eleq1d 2298 |
. . . . . . . . 9
|
| 9 | 6, 8 | imbi12d 234 |
. . . . . . . 8
|
| 10 | 9 | spcgv 2890 |
. . . . . . 7
|
| 11 | 5, 10 | syl 14 |
. . . . . 6
|
| 12 | 11 | com23 78 |
. . . . 5
|
| 13 | 12 | ex 115 |
. . . 4
|
| 14 | 13 | pm2.43d 50 |
. . 3
|
| 15 | 3, 14 | mpid 42 |
. 2
|
| 16 | 15 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3889 df-top 14672 |
| This theorem is referenced by: iunopn 14676 unopn 14679 0opn 14680 topopn 14682 tgtop 14742 ntropn 14791 neipsm 14828 unimopn 15160 metrest 15180 cnopncntop 15218 cnopn 15219 |
| Copyright terms: Public domain | W3C validator |