Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniopn | Unicode version |
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
uniopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 12637 | . . . . 5 | |
2 | 1 | ibi 175 | . . . 4 |
3 | 2 | simpld 111 | . . 3 |
4 | elpw2g 4135 | . . . . . . . 8 | |
5 | 4 | biimpar 295 | . . . . . . 7 |
6 | sseq1 3165 | . . . . . . . . 9 | |
7 | unieq 3798 | . . . . . . . . . 10 | |
8 | 7 | eleq1d 2235 | . . . . . . . . 9 |
9 | 6, 8 | imbi12d 233 | . . . . . . . 8 |
10 | 9 | spcgv 2813 | . . . . . . 7 |
11 | 5, 10 | syl 14 | . . . . . 6 |
12 | 11 | com23 78 | . . . . 5 |
13 | 12 | ex 114 | . . . 4 |
14 | 13 | pm2.43d 50 | . . 3 |
15 | 3, 14 | mpid 42 | . 2 |
16 | 15 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wcel 2136 wral 2444 cin 3115 wss 3116 cpw 3559 cuni 3789 ctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-uni 3790 df-top 12636 |
This theorem is referenced by: iunopn 12640 unopn 12643 0opn 12644 topopn 12646 tgtop 12708 ntropn 12757 neipsm 12794 unimopn 13126 metrest 13146 cnopncntop 13177 |
Copyright terms: Public domain | W3C validator |