ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniopn Unicode version

Theorem uniopn 12639
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
uniopn  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J
)

Proof of Theorem uniopn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 12637 . . . . 5  |-  ( J  e.  Top  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
21ibi 175 . . . 4  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) )
32simpld 111 . . 3  |-  ( J  e.  Top  ->  A. x
( x  C_  J  ->  U. x  e.  J
) )
4 elpw2g 4135 . . . . . . . 8  |-  ( J  e.  Top  ->  ( A  e.  ~P J  <->  A 
C_  J ) )
54biimpar 295 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  A  e.  ~P J
)
6 sseq1 3165 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  C_  J  <->  A  C_  J
) )
7 unieq 3798 . . . . . . . . . 10  |-  ( x  =  A  ->  U. x  =  U. A )
87eleq1d 2235 . . . . . . . . 9  |-  ( x  =  A  ->  ( U. x  e.  J  <->  U. A  e.  J ) )
96, 8imbi12d 233 . . . . . . . 8  |-  ( x  =  A  ->  (
( x  C_  J  ->  U. x  e.  J
)  <->  ( A  C_  J  ->  U. A  e.  J
) ) )
109spcgv 2813 . . . . . . 7  |-  ( A  e.  ~P J  -> 
( A. x ( x  C_  J  ->  U. x  e.  J )  ->  ( A  C_  J  ->  U. A  e.  J
) ) )
115, 10syl 14 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  J )  -> 
( A. x ( x  C_  J  ->  U. x  e.  J )  ->  ( A  C_  J  ->  U. A  e.  J
) ) )
1211com23 78 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  J )  -> 
( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J )  ->  U. A  e.  J
) ) )
1312ex 114 . . . 4  |-  ( J  e.  Top  ->  ( A  C_  J  ->  ( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  ->  U. A  e.  J ) ) ) )
1413pm2.43d 50 . . 3  |-  ( J  e.  Top  ->  ( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  ->  U. A  e.  J ) ) )
153, 14mpid 42 . 2  |-  ( J  e.  Top  ->  ( A  C_  J  ->  U. A  e.  J ) )
1615imp 123 1  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444    i^i cin 3115    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790  df-top 12636
This theorem is referenced by:  iunopn  12640  unopn  12643  0opn  12644  topopn  12646  tgtop  12708  ntropn  12757  neipsm  12794  unimopn  13126  metrest  13146  cnopncntop  13177
  Copyright terms: Public domain W3C validator