Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniopn | Unicode version |
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
uniopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 12791 | . . . . 5 | |
2 | 1 | ibi 175 | . . . 4 |
3 | 2 | simpld 111 | . . 3 |
4 | elpw2g 4142 | . . . . . . . 8 | |
5 | 4 | biimpar 295 | . . . . . . 7 |
6 | sseq1 3170 | . . . . . . . . 9 | |
7 | unieq 3805 | . . . . . . . . . 10 | |
8 | 7 | eleq1d 2239 | . . . . . . . . 9 |
9 | 6, 8 | imbi12d 233 | . . . . . . . 8 |
10 | 9 | spcgv 2817 | . . . . . . 7 |
11 | 5, 10 | syl 14 | . . . . . 6 |
12 | 11 | com23 78 | . . . . 5 |
13 | 12 | ex 114 | . . . 4 |
14 | 13 | pm2.43d 50 | . . 3 |
15 | 3, 14 | mpid 42 | . 2 |
16 | 15 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wcel 2141 wral 2448 cin 3120 wss 3121 cpw 3566 cuni 3796 ctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 df-top 12790 |
This theorem is referenced by: iunopn 12794 unopn 12797 0opn 12798 topopn 12800 tgtop 12862 ntropn 12911 neipsm 12948 unimopn 13280 metrest 13300 cnopncntop 13331 |
Copyright terms: Public domain | W3C validator |