Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniopn | Unicode version |
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
uniopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 12357 | . . . . 5 | |
2 | 1 | ibi 175 | . . . 4 |
3 | 2 | simpld 111 | . . 3 |
4 | elpw2g 4117 | . . . . . . . 8 | |
5 | 4 | biimpar 295 | . . . . . . 7 |
6 | sseq1 3151 | . . . . . . . . 9 | |
7 | unieq 3781 | . . . . . . . . . 10 | |
8 | 7 | eleq1d 2226 | . . . . . . . . 9 |
9 | 6, 8 | imbi12d 233 | . . . . . . . 8 |
10 | 9 | spcgv 2799 | . . . . . . 7 |
11 | 5, 10 | syl 14 | . . . . . 6 |
12 | 11 | com23 78 | . . . . 5 |
13 | 12 | ex 114 | . . . 4 |
14 | 13 | pm2.43d 50 | . . 3 |
15 | 3, 14 | mpid 42 | . 2 |
16 | 15 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1333 wceq 1335 wcel 2128 wral 2435 cin 3101 wss 3102 cpw 3543 cuni 3772 ctop 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 df-uni 3773 df-top 12356 |
This theorem is referenced by: iunopn 12360 unopn 12363 0opn 12364 topopn 12366 tgtop 12428 ntropn 12477 neipsm 12514 unimopn 12846 metrest 12866 cnopncntop 12897 |
Copyright terms: Public domain | W3C validator |