ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniopn Unicode version

Theorem uniopn 14588
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
uniopn  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J
)

Proof of Theorem uniopn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 14586 . . . . 5  |-  ( J  e.  Top  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
21ibi 176 . . . 4  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) )
32simpld 112 . . 3  |-  ( J  e.  Top  ->  A. x
( x  C_  J  ->  U. x  e.  J
) )
4 elpw2g 4216 . . . . . . . 8  |-  ( J  e.  Top  ->  ( A  e.  ~P J  <->  A 
C_  J ) )
54biimpar 297 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  A  e.  ~P J
)
6 sseq1 3224 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  C_  J  <->  A  C_  J
) )
7 unieq 3873 . . . . . . . . . 10  |-  ( x  =  A  ->  U. x  =  U. A )
87eleq1d 2276 . . . . . . . . 9  |-  ( x  =  A  ->  ( U. x  e.  J  <->  U. A  e.  J ) )
96, 8imbi12d 234 . . . . . . . 8  |-  ( x  =  A  ->  (
( x  C_  J  ->  U. x  e.  J
)  <->  ( A  C_  J  ->  U. A  e.  J
) ) )
109spcgv 2867 . . . . . . 7  |-  ( A  e.  ~P J  -> 
( A. x ( x  C_  J  ->  U. x  e.  J )  ->  ( A  C_  J  ->  U. A  e.  J
) ) )
115, 10syl 14 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  J )  -> 
( A. x ( x  C_  J  ->  U. x  e.  J )  ->  ( A  C_  J  ->  U. A  e.  J
) ) )
1211com23 78 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  J )  -> 
( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J )  ->  U. A  e.  J
) ) )
1312ex 115 . . . 4  |-  ( J  e.  Top  ->  ( A  C_  J  ->  ( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  ->  U. A  e.  J ) ) ) )
1413pm2.43d 50 . . 3  |-  ( J  e.  Top  ->  ( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  ->  U. A  e.  J ) ) )
153, 14mpid 42 . 2  |-  ( J  e.  Top  ->  ( A  C_  J  ->  U. A  e.  J ) )
1615imp 124 1  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2178   A.wral 2486    i^i cin 3173    C_ wss 3174   ~Pcpw 3626   U.cuni 3864   Topctop 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-uni 3865  df-top 14585
This theorem is referenced by:  iunopn  14589  unopn  14592  0opn  14593  topopn  14595  tgtop  14655  ntropn  14704  neipsm  14741  unimopn  15073  metrest  15093  cnopncntop  15131  cnopn  15132
  Copyright terms: Public domain W3C validator