Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inopn | Unicode version |
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
inopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 12637 | . . . . 5 | |
2 | 1 | ibi 175 | . . . 4 |
3 | 2 | simprd 113 | . . 3 |
4 | ineq1 3316 | . . . . 5 | |
5 | 4 | eleq1d 2235 | . . . 4 |
6 | ineq2 3317 | . . . . 5 | |
7 | 6 | eleq1d 2235 | . . . 4 |
8 | 5, 7 | rspc2v 2843 | . . 3 |
9 | 3, 8 | syl5com 29 | . 2 |
10 | 9 | 3impib 1191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wal 1341 wceq 1343 wcel 2136 wral 2444 cin 3115 wss 3116 cuni 3789 ctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-top 12636 |
This theorem is referenced by: tgclb 12705 topbas 12707 difopn 12748 uncld 12753 ntrin 12764 innei 12803 restopnb 12821 cnptoprest 12879 txcnp 12911 txcnmpt 12913 mopnin 13127 |
Copyright terms: Public domain | W3C validator |