ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inopn Unicode version

Theorem inopn 13955
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
inopn  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B
)  e.  J )

Proof of Theorem inopn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 13951 . . . . 5  |-  ( J  e.  Top  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
21ibi 176 . . . 4  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) )
32simprd 114 . . 3  |-  ( J  e.  Top  ->  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
)
4 ineq1 3344 . . . . 5  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
54eleq1d 2258 . . . 4  |-  ( x  =  A  ->  (
( x  i^i  y
)  e.  J  <->  ( A  i^i  y )  e.  J
) )
6 ineq2 3345 . . . . 5  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
76eleq1d 2258 . . . 4  |-  ( y  =  B  ->  (
( A  i^i  y
)  e.  J  <->  ( A  i^i  B )  e.  J
) )
85, 7rspc2v 2869 . . 3  |-  ( ( A  e.  J  /\  B  e.  J )  ->  ( A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J  ->  ( A  i^i  B
)  e.  J ) )
93, 8syl5com 29 . 2  |-  ( J  e.  Top  ->  (
( A  e.  J  /\  B  e.  J
)  ->  ( A  i^i  B )  e.  J
) )
1093impib 1203 1  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2160   A.wral 2468    i^i cin 3143    C_ wss 3144   U.cuni 3824   Topctop 13949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-in 3150  df-ss 3157  df-pw 3592  df-top 13950
This theorem is referenced by:  tgclb  14017  topbas  14019  difopn  14060  uncld  14065  ntrin  14076  innei  14115  restopnb  14133  cnptoprest  14191  txcnp  14223  txcnmpt  14225  mopnin  14439
  Copyright terms: Public domain W3C validator