ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inopn Unicode version

Theorem inopn 12180
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
inopn  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B
)  e.  J )

Proof of Theorem inopn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 12176 . . . . 5  |-  ( J  e.  Top  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
21ibi 175 . . . 4  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) )
32simprd 113 . . 3  |-  ( J  e.  Top  ->  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
)
4 ineq1 3270 . . . . 5  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
54eleq1d 2208 . . . 4  |-  ( x  =  A  ->  (
( x  i^i  y
)  e.  J  <->  ( A  i^i  y )  e.  J
) )
6 ineq2 3271 . . . . 5  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
76eleq1d 2208 . . . 4  |-  ( y  =  B  ->  (
( A  i^i  y
)  e.  J  <->  ( A  i^i  B )  e.  J
) )
85, 7rspc2v 2802 . . 3  |-  ( ( A  e.  J  /\  B  e.  J )  ->  ( A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J  ->  ( A  i^i  B
)  e.  J ) )
93, 8syl5com 29 . 2  |-  ( J  e.  Top  ->  (
( A  e.  J  /\  B  e.  J
)  ->  ( A  i^i  B )  e.  J
) )
1093impib 1179 1  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2416    i^i cin 3070    C_ wss 3071   U.cuni 3736   Topctop 12174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-in 3077  df-ss 3084  df-pw 3512  df-top 12175
This theorem is referenced by:  tgclb  12244  topbas  12246  difopn  12287  uncld  12292  ntrin  12303  innei  12342  restopnb  12360  cnptoprest  12418  txcnp  12450  txcnmpt  12452  mopnin  12666
  Copyright terms: Public domain W3C validator