Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inopn | Unicode version |
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
inopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 12791 | . . . . 5 | |
2 | 1 | ibi 175 | . . . 4 |
3 | 2 | simprd 113 | . . 3 |
4 | ineq1 3321 | . . . . 5 | |
5 | 4 | eleq1d 2239 | . . . 4 |
6 | ineq2 3322 | . . . . 5 | |
7 | 6 | eleq1d 2239 | . . . 4 |
8 | 5, 7 | rspc2v 2847 | . . 3 |
9 | 3, 8 | syl5com 29 | . 2 |
10 | 9 | 3impib 1196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wal 1346 wceq 1348 wcel 2141 wral 2448 cin 3120 wss 3121 cuni 3796 ctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-top 12790 |
This theorem is referenced by: tgclb 12859 topbas 12861 difopn 12902 uncld 12907 ntrin 12918 innei 12957 restopnb 12975 cnptoprest 13033 txcnp 13065 txcnmpt 13067 mopnin 13281 |
Copyright terms: Public domain | W3C validator |