ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopn GIF version

Theorem iunopn 14170
Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iunopn ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3944 . . 3 (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 277 . 2 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 uniiunlem 3268 . . . 4 (∀𝑥𝐴 𝐵𝐽 → (∀𝑥𝐴 𝐵𝐽 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽))
43ibi 176 . . 3 (∀𝑥𝐴 𝐵𝐽 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽)
5 uniopn 14169 . . 3 ((𝐽 ∈ Top ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
64, 5sylan2 286 . 2 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
72, 6eqeltrd 2270 1 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  wss 3153   cuni 3835   ciun 3912  Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-uni 3836  df-iun 3914  df-top 14166
This theorem is referenced by:  tgcn  14376
  Copyright terms: Public domain W3C validator