Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunopn | GIF version |
Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
iunopn | ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 3897 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | 1 | adantl 275 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
3 | uniiunlem 3230 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽)) | |
4 | 3 | ibi 175 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽) |
5 | uniopn 12599 | . . 3 ⊢ ((𝐽 ∈ Top ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝐽) | |
6 | 4, 5 | sylan2 284 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝐽) |
7 | 2, 6 | eqeltrd 2242 | 1 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {cab 2151 ∀wral 2443 ∃wrex 2444 ⊆ wss 3115 ∪ cuni 3788 ∪ ciun 3865 Topctop 12595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-in 3121 df-ss 3128 df-pw 3560 df-uni 3789 df-iun 3867 df-top 12596 |
This theorem is referenced by: tgcn 12808 |
Copyright terms: Public domain | W3C validator |