| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunopn | GIF version | ||
| Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| iunopn | ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 3996 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | uniiunlem 3313 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽)) | |
| 4 | 3 | ibi 176 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽) |
| 5 | uniopn 14669 | . . 3 ⊢ ((𝐽 ∈ Top ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝐽) | |
| 6 | 4, 5 | sylan2 286 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝐽) |
| 7 | 2, 6 | eqeltrd 2306 | 1 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 ∪ cuni 3887 ∪ ciun 3964 Topctop 14665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3888 df-iun 3966 df-top 14666 |
| This theorem is referenced by: tgcn 14876 |
| Copyright terms: Public domain | W3C validator |