ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopn GIF version

Theorem iunopn 12178
Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iunopn ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3845 . . 3 (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 275 . 2 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 uniiunlem 3185 . . . 4 (∀𝑥𝐴 𝐵𝐽 → (∀𝑥𝐴 𝐵𝐽 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽))
43ibi 175 . . 3 (∀𝑥𝐴 𝐵𝐽 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽)
5 uniopn 12177 . . 3 ((𝐽 ∈ Top ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
64, 5sylan2 284 . 2 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
72, 6eqeltrd 2216 1 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  wss 3071   cuni 3736   ciun 3813  Topctop 12173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-in 3077  df-ss 3084  df-pw 3512  df-uni 3737  df-iun 3815  df-top 12174
This theorem is referenced by:  tgcn  12386
  Copyright terms: Public domain W3C validator