ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgcn Unicode version

Theorem tgcn 14444
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
tgcn.3  |-  ( ph  ->  K  =  ( topGen `  B ) )
tgcn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
tgcn  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Distinct variable groups:    y, B    y, F    y, J    y, K    y, X    y, Y
Allowed substitution hint:    ph( y)

Proof of Theorem tgcn
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 tgcn.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 iscn 14433 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
41, 2, 3syl2anc 411 . 2  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J
) ) )
5 tgcn.3 . . . . . . . . 9  |-  ( ph  ->  K  =  ( topGen `  B ) )
6 topontop 14250 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
72, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
85, 7eqeltrrd 2274 . . . . . . . 8  |-  ( ph  ->  ( topGen `  B )  e.  Top )
9 tgclb 14301 . . . . . . . 8  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
108, 9sylibr 134 . . . . . . 7  |-  ( ph  ->  B  e.  TopBases )
11 bastg 14297 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1210, 11syl 14 . . . . . 6  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1312, 5sseqtrrd 3222 . . . . 5  |-  ( ph  ->  B  C_  K )
14 ssralv 3247 . . . . 5  |-  ( B 
C_  K  ->  ( A. y  e.  K  ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
1513, 14syl 14 . . . 4  |-  ( ph  ->  ( A. y  e.  K  ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
165eleq2d 2266 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  K  <->  x  e.  ( topGen `  B
) ) )
17 eltg3 14293 . . . . . . . . . 10  |-  ( B  e.  TopBases  ->  ( x  e.  ( topGen `  B )  <->  E. z ( z  C_  B  /\  x  =  U. z ) ) )
1810, 17syl 14 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  (
topGen `  B )  <->  E. z
( z  C_  B  /\  x  =  U. z ) ) )
1916, 18bitrd 188 . . . . . . . 8  |-  ( ph  ->  ( x  e.  K  <->  E. z ( z  C_  B  /\  x  =  U. z ) ) )
20 ssralv 3247 . . . . . . . . . . . 12  |-  ( z 
C_  B  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  z  ( `' F " y )  e.  J ) )
21 topontop 14250 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
221, 21syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
23 iunopn 14238 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  A. y  e.  z  ( `' F " y )  e.  J )  ->  U_ y  e.  z 
( `' F "
y )  e.  J
)
2423ex 115 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  ( A. y  e.  z 
( `' F "
y )  e.  J  ->  U_ y  e.  z  ( `' F "
y )  e.  J
) )
2522, 24syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( A. y  e.  z  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F "
y )  e.  J
) )
2620, 25sylan9r 410 . . . . . . . . . . 11  |-  ( (
ph  /\  z  C_  B )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F " y )  e.  J ) )
27 imaeq2 5005 . . . . . . . . . . . . . 14  |-  ( x  =  U. z  -> 
( `' F "
x )  =  ( `' F " U. z
) )
28 imauni 5808 . . . . . . . . . . . . . 14  |-  ( `' F " U. z
)  =  U_ y  e.  z  ( `' F " y )
2927, 28eqtrdi 2245 . . . . . . . . . . . . 13  |-  ( x  =  U. z  -> 
( `' F "
x )  =  U_ y  e.  z  ( `' F " y ) )
3029eleq1d 2265 . . . . . . . . . . . 12  |-  ( x  =  U. z  -> 
( ( `' F " x )  e.  J  <->  U_ y  e.  z  ( `' F " y )  e.  J ) )
3130imbi2d 230 . . . . . . . . . . 11  |-  ( x  =  U. z  -> 
( ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J )  <->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  U_ y  e.  z  ( `' F " y )  e.  J ) ) )
3226, 31syl5ibrcom 157 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  B )  ->  (
x  =  U. z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
3332expimpd 363 . . . . . . . . 9  |-  ( ph  ->  ( ( z  C_  B  /\  x  =  U. z )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) )
3433exlimdv 1833 . . . . . . . 8  |-  ( ph  ->  ( E. z ( z  C_  B  /\  x  =  U. z
)  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) )
3519, 34sylbid 150 . . . . . . 7  |-  ( ph  ->  ( x  e.  K  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
3635imp 124 . . . . . 6  |-  ( (
ph  /\  x  e.  K )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) )
3736ralrimdva 2577 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. x  e.  K  ( `' F " x )  e.  J ) )
38 imaeq2 5005 . . . . . . 7  |-  ( x  =  y  ->  ( `' F " x )  =  ( `' F " y ) )
3938eleq1d 2265 . . . . . 6  |-  ( x  =  y  ->  (
( `' F "
x )  e.  J  <->  ( `' F " y )  e.  J ) )
4039cbvralv 2729 . . . . 5  |-  ( A. x  e.  K  ( `' F " x )  e.  J  <->  A. y  e.  K  ( `' F " y )  e.  J )
4137, 40imbitrdi 161 . . . 4  |-  ( ph  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  K  ( `' F " y )  e.  J ) )
4215, 41impbid 129 . . 3  |-  ( ph  ->  ( A. y  e.  K  ( `' F " y )  e.  J  <->  A. y  e.  B  ( `' F " y )  e.  J ) )
4342anbi2d 464 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J )  <->  ( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J ) ) )
444, 43bitrd 188 1  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475    C_ wss 3157   U.cuni 3839   U_ciun 3916   `'ccnv 4662   "cima 4666   -->wf 5254   ` cfv 5258  (class class class)co 5922   topGenctg 12925   Topctop 14233  TopOnctopon 14246   TopBasesctb 14278    Cn ccn 14421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424
This theorem is referenced by:  txcnmpt  14509
  Copyright terms: Public domain W3C validator