![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunxdif2 | GIF version |
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.) |
Ref | Expression |
---|---|
iunxdif2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iunxdif2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss2 3797 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷) | |
2 | difss 3141 | . . . . 5 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
3 | iunss1 3763 | . . . . 5 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷) | |
4 | 2, 3 | ax-mp 7 | . . . 4 ⊢ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷 |
5 | iunxdif2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
6 | 5 | cbviunv 3791 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐴 𝐷 |
7 | 4, 6 | sseqtr4i 3074 | . . 3 ⊢ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 |
8 | 1, 7 | jctil 306 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷)) |
9 | eqss 3054 | . 2 ⊢ (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷)) | |
10 | 8, 9 | sylibr 133 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∀wral 2370 ∃wrex 2371 ∖ cdif 3010 ⊆ wss 3013 ∪ ciun 3752 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-dif 3015 df-in 3019 df-ss 3026 df-iun 3754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |