ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxdif2 GIF version

Theorem iunxdif2 3965
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
Hypothesis
Ref Expression
iunxdif2.1 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
iunxdif2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem iunxdif2
StepHypRef Expression
1 iunss2 3961 . . 3 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑥𝐴 𝐶 𝑦 ∈ (𝐴𝐵)𝐷)
2 difss 3289 . . . . 5 (𝐴𝐵) ⊆ 𝐴
3 iunss1 3927 . . . . 5 ((𝐴𝐵) ⊆ 𝐴 𝑦 ∈ (𝐴𝐵)𝐷 𝑦𝐴 𝐷)
42, 3ax-mp 5 . . . 4 𝑦 ∈ (𝐴𝐵)𝐷 𝑦𝐴 𝐷
5 iunxdif2.1 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
65cbviunv 3955 . . . 4 𝑥𝐴 𝐶 = 𝑦𝐴 𝐷
74, 6sseqtrri 3218 . . 3 𝑦 ∈ (𝐴𝐵)𝐷 𝑥𝐴 𝐶
81, 7jctil 312 . 2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 → ( 𝑦 ∈ (𝐴𝐵)𝐷 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑦 ∈ (𝐴𝐵)𝐷))
9 eqss 3198 . 2 ( 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶 ↔ ( 𝑦 ∈ (𝐴𝐵)𝐷 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑦 ∈ (𝐴𝐵)𝐷))
108, 9sylibr 134 1 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wral 2475  wrex 2476  cdif 3154  wss 3157   ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-iun 3918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator