ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunrab Unicode version

Theorem iunrab 3960
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
iunrab  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem iunrab
StepHypRef Expression
1 iunab 3959 . 2  |-  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }  =  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }
2 df-rab 2481 . . . 4  |-  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) }
32a1i 9 . . 3  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) } )
43iuneq2i 3930 . 2  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }
5 df-rab 2481 . . 3  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
6 r19.42v 2651 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  ph )  <->  ( y  e.  B  /\  E. x  e.  A  ph ) )
76abbii 2309 . . 3  |-  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
85, 7eqtr4i 2217 . 2  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  E. x  e.  A  (
y  e.  B  /\  ph ) }
91, 4, 83eqtr4i 2224 1  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   {crab 2476   U_ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-in 3159  df-ss 3166  df-iun 3914
This theorem is referenced by:  hashrabrex  11624  phisum  12378  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator