Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunrab | Unicode version |
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
iunrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunab 3895 | . 2 | |
2 | df-rab 2444 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | 3 | iuneq2i 3867 | . 2 |
5 | df-rab 2444 | . . 3 | |
6 | r19.42v 2614 | . . . 4 | |
7 | 6 | abbii 2273 | . . 3 |
8 | 5, 7 | eqtr4i 2181 | . 2 |
9 | 1, 4, 8 | 3eqtr4i 2188 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1335 wcel 2128 cab 2143 wrex 2436 crab 2439 ciun 3849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-in 3108 df-ss 3115 df-iun 3851 |
This theorem is referenced by: hashrabrex 11360 phisum 12092 |
Copyright terms: Public domain | W3C validator |