ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunrab Unicode version

Theorem iunrab 3896
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
iunrab  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem iunrab
StepHypRef Expression
1 iunab 3895 . 2  |-  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }  =  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }
2 df-rab 2444 . . . 4  |-  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) }
32a1i 9 . . 3  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) } )
43iuneq2i 3867 . 2  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }
5 df-rab 2444 . . 3  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
6 r19.42v 2614 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  ph )  <->  ( y  e.  B  /\  E. x  e.  A  ph ) )
76abbii 2273 . . 3  |-  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
85, 7eqtr4i 2181 . 2  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  E. x  e.  A  (
y  e.  B  /\  ph ) }
91, 4, 83eqtr4i 2188 1  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335    e. wcel 2128   {cab 2143   E.wrex 2436   {crab 2439   U_ciun 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-in 3108  df-ss 3115  df-iun 3851
This theorem is referenced by:  hashrabrex  11360  phisum  12092
  Copyright terms: Public domain W3C validator