ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisuc1 Unicode version

Theorem rdgisuc1 6289
Description: One way of describing the value of the recursive definition generator at a successor. There is no condition on the characteristic function  F other than  F  Fn  _V. Given that, the resulting expression encompasses both the expected successor term  ( F `  ( rec ( F ,  A ) `  B
) ) but also terms that correspond to the initial value  A and to limit ordinals  U_ x  e.  B ( F `  ( rec ( F ,  A ) `  x
) ).

If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6290. (Contributed by Jim Kingdon, 9-Jun-2019.)

Hypotheses
Ref Expression
rdgisuc1.1  |-  ( ph  ->  F  Fn  _V )
rdgisuc1.2  |-  ( ph  ->  A  e.  V )
rdgisuc1.3  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
rdgisuc1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
Distinct variable groups:    x, F    x, A    x, B    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem rdgisuc1
StepHypRef Expression
1 rdgisuc1.1 . . 3  |-  ( ph  ->  F  Fn  _V )
2 rdgisuc1.2 . . 3  |-  ( ph  ->  A  e.  V )
3 rdgisuc1.3 . . . 4  |-  ( ph  ->  B  e.  On )
4 suceloni 4425 . . . 4  |-  ( B  e.  On  ->  suc  B  e.  On )
53, 4syl 14 . . 3  |-  ( ph  ->  suc  B  e.  On )
6 rdgival 6287 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  suc  B  e.  On )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  U_ x  e.  suc  B ( F `  ( rec ( F ,  A
) `  x )
) ) )
71, 2, 5, 6syl3anc 1217 . 2  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) ) ) )
8 df-suc 4301 . . . . . . 7  |-  suc  B  =  ( B  u.  { B } )
9 iuneq1 3834 . . . . . . 7  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  = 
U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) ) )
108, 9ax-mp 5 . . . . . 6  |-  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  = 
U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) )
11 iunxun 3900 . . . . . 6  |-  U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `  x
) ) )
1210, 11eqtri 2161 . . . . 5  |-  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `  x
) ) )
13 fveq2 5429 . . . . . . . 8  |-  ( x  =  B  ->  ( rec ( F ,  A
) `  x )  =  ( rec ( F ,  A ) `  B ) )
1413fveq2d 5433 . . . . . . 7  |-  ( x  =  B  ->  ( F `  ( rec ( F ,  A ) `
 x ) )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1514iunxsng 3896 . . . . . 6  |-  ( B  e.  On  ->  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `
 x ) )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1615uneq2d 3235 . . . . 5  |-  ( B  e.  On  ->  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `
 x ) ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) )
1712, 16syl5eq 2185 . . . 4  |-  ( B  e.  On  ->  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) ) )
1817uneq2d 3235 . . 3  |-  ( B  e.  On  ->  ( A  u.  U_ x  e. 
suc  B ( F `
 ( rec ( F ,  A ) `  x ) ) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) ) )
193, 18syl 14 . 2  |-  ( ph  ->  ( A  u.  U_ x  e.  suc  B ( F `  ( rec ( F ,  A
) `  x )
) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
207, 19eqtrd 2173 1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   _Vcvv 2689    u. cun 3074   {csn 3532   U_ciun 3821   Oncon0 4293   suc csuc 4295    Fn wfn 5126   ` cfv 5131   reccrdg 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-recs 6210  df-irdg 6275
This theorem is referenced by:  rdgisucinc  6290
  Copyright terms: Public domain W3C validator