ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisuc1 Unicode version

Theorem rdgisuc1 6437
Description: One way of describing the value of the recursive definition generator at a successor. There is no condition on the characteristic function  F other than  F  Fn  _V. Given that, the resulting expression encompasses both the expected successor term  ( F `  ( rec ( F ,  A ) `  B
) ) but also terms that correspond to the initial value  A and to limit ordinals  U_ x  e.  B ( F `  ( rec ( F ,  A ) `  x
) ).

If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6438. (Contributed by Jim Kingdon, 9-Jun-2019.)

Hypotheses
Ref Expression
rdgisuc1.1  |-  ( ph  ->  F  Fn  _V )
rdgisuc1.2  |-  ( ph  ->  A  e.  V )
rdgisuc1.3  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
rdgisuc1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
Distinct variable groups:    x, F    x, A    x, B    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem rdgisuc1
StepHypRef Expression
1 rdgisuc1.1 . . 3  |-  ( ph  ->  F  Fn  _V )
2 rdgisuc1.2 . . 3  |-  ( ph  ->  A  e.  V )
3 rdgisuc1.3 . . . 4  |-  ( ph  ->  B  e.  On )
4 onsuc 4533 . . . 4  |-  ( B  e.  On  ->  suc  B  e.  On )
53, 4syl 14 . . 3  |-  ( ph  ->  suc  B  e.  On )
6 rdgival 6435 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  suc  B  e.  On )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  U_ x  e.  suc  B ( F `  ( rec ( F ,  A
) `  x )
) ) )
71, 2, 5, 6syl3anc 1249 . 2  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) ) ) )
8 df-suc 4402 . . . . . . 7  |-  suc  B  =  ( B  u.  { B } )
9 iuneq1 3925 . . . . . . 7  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  = 
U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) ) )
108, 9ax-mp 5 . . . . . 6  |-  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  = 
U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) )
11 iunxun 3992 . . . . . 6  |-  U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `  x
) ) )
1210, 11eqtri 2214 . . . . 5  |-  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `  x
) ) )
13 fveq2 5554 . . . . . . . 8  |-  ( x  =  B  ->  ( rec ( F ,  A
) `  x )  =  ( rec ( F ,  A ) `  B ) )
1413fveq2d 5558 . . . . . . 7  |-  ( x  =  B  ->  ( F `  ( rec ( F ,  A ) `
 x ) )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1514iunxsng 3988 . . . . . 6  |-  ( B  e.  On  ->  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `
 x ) )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1615uneq2d 3313 . . . . 5  |-  ( B  e.  On  ->  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `
 x ) ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) )
1712, 16eqtrid 2238 . . . 4  |-  ( B  e.  On  ->  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) ) )
1817uneq2d 3313 . . 3  |-  ( B  e.  On  ->  ( A  u.  U_ x  e. 
suc  B ( F `
 ( rec ( F ,  A ) `  x ) ) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) ) )
193, 18syl 14 . 2  |-  ( ph  ->  ( A  u.  U_ x  e.  suc  B ( F `  ( rec ( F ,  A
) `  x )
) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
207, 19eqtrd 2226 1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151   {csn 3618   U_ciun 3912   Oncon0 4394   suc csuc 4396    Fn wfn 5249   ` cfv 5254   reccrdg 6422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358  df-irdg 6423
This theorem is referenced by:  rdgisucinc  6438
  Copyright terms: Public domain W3C validator