ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisuc1 Unicode version

Theorem rdgisuc1 6442
Description: One way of describing the value of the recursive definition generator at a successor. There is no condition on the characteristic function  F other than  F  Fn  _V. Given that, the resulting expression encompasses both the expected successor term  ( F `  ( rec ( F ,  A ) `  B
) ) but also terms that correspond to the initial value  A and to limit ordinals  U_ x  e.  B ( F `  ( rec ( F ,  A ) `  x
) ).

If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6443. (Contributed by Jim Kingdon, 9-Jun-2019.)

Hypotheses
Ref Expression
rdgisuc1.1  |-  ( ph  ->  F  Fn  _V )
rdgisuc1.2  |-  ( ph  ->  A  e.  V )
rdgisuc1.3  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
rdgisuc1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
Distinct variable groups:    x, F    x, A    x, B    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem rdgisuc1
StepHypRef Expression
1 rdgisuc1.1 . . 3  |-  ( ph  ->  F  Fn  _V )
2 rdgisuc1.2 . . 3  |-  ( ph  ->  A  e.  V )
3 rdgisuc1.3 . . . 4  |-  ( ph  ->  B  e.  On )
4 onsuc 4537 . . . 4  |-  ( B  e.  On  ->  suc  B  e.  On )
53, 4syl 14 . . 3  |-  ( ph  ->  suc  B  e.  On )
6 rdgival 6440 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  suc  B  e.  On )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  U_ x  e.  suc  B ( F `  ( rec ( F ,  A
) `  x )
) ) )
71, 2, 5, 6syl3anc 1249 . 2  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) ) ) )
8 df-suc 4406 . . . . . . 7  |-  suc  B  =  ( B  u.  { B } )
9 iuneq1 3929 . . . . . . 7  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  = 
U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) ) )
108, 9ax-mp 5 . . . . . 6  |-  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  = 
U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) )
11 iunxun 3996 . . . . . 6  |-  U_ x  e.  ( B  u.  { B } ) ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `  x
) ) )
1210, 11eqtri 2217 . . . . 5  |-  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `  x
) ) )
13 fveq2 5558 . . . . . . . 8  |-  ( x  =  B  ->  ( rec ( F ,  A
) `  x )  =  ( rec ( F ,  A ) `  B ) )
1413fveq2d 5562 . . . . . . 7  |-  ( x  =  B  ->  ( F `  ( rec ( F ,  A ) `
 x ) )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1514iunxsng 3992 . . . . . 6  |-  ( B  e.  On  ->  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `
 x ) )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1615uneq2d 3317 . . . . 5  |-  ( B  e.  On  ->  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  U_ x  e.  { B }  ( F `  ( rec ( F ,  A ) `
 x ) ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) )
1712, 16eqtrid 2241 . . . 4  |-  ( B  e.  On  ->  U_ x  e.  suc  B ( F `
 ( rec ( F ,  A ) `  x ) )  =  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x
) )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) ) )
1817uneq2d 3317 . . 3  |-  ( B  e.  On  ->  ( A  u.  U_ x  e. 
suc  B ( F `
 ( rec ( F ,  A ) `  x ) ) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) ) )
193, 18syl 14 . 2  |-  ( ph  ->  ( A  u.  U_ x  e.  suc  B ( F `  ( rec ( F ,  A
) `  x )
) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
207, 19eqtrd 2229 1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155   {csn 3622   U_ciun 3916   Oncon0 4398   suc csuc 4400    Fn wfn 5253   ` cfv 5258   reccrdg 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363  df-irdg 6428
This theorem is referenced by:  rdgisucinc  6443
  Copyright terms: Public domain W3C validator