ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc Unicode version

Theorem oasuc 6443
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )

Proof of Theorem oasuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 suceloni 4485 . . . . . 6  |-  ( B  e.  On  ->  suc  B  e.  On )
2 oav2 6442 . . . . . 6  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  U_ x  e.  suc  B  suc  ( A  +o  x ) ) )
31, 2sylan2 284 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  U_ x  e. 
suc  B  suc  ( A  +o  x ) ) )
4 df-suc 4356 . . . . . . . . . 10  |-  suc  B  =  ( B  u.  { B } )
5 iuneq1 3886 . . . . . . . . . 10  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B  suc  ( A  +o  x )  = 
U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x ) )
64, 5ax-mp 5 . . . . . . . . 9  |-  U_ x  e.  suc  B  suc  ( A  +o  x )  = 
U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x )
7 iunxun 3952 . . . . . . . . 9  |-  U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
U_ x  e.  { B } suc  ( A  +o  x ) )
86, 7eqtri 2191 . . . . . . . 8  |-  U_ x  e.  suc  B  suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
U_ x  e.  { B } suc  ( A  +o  x ) )
9 oveq2 5861 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
10 suceq 4387 . . . . . . . . . . 11  |-  ( ( A  +o  x )  =  ( A  +o  B )  ->  suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
119, 10syl 14 . . . . . . . . . 10  |-  ( x  =  B  ->  suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
1211iunxsng 3948 . . . . . . . . 9  |-  ( B  e.  On  ->  U_ x  e.  { B } suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
1312uneq2d 3281 . . . . . . . 8  |-  ( B  e.  On  ->  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  U_ x  e.  { B } suc  ( A  +o  x
) )  =  (
U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) )
148, 13eqtrid 2215 . . . . . . 7  |-  ( B  e.  On  ->  U_ x  e.  suc  B  suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
suc  ( A  +o  B ) ) )
1514uneq2d 3281 . . . . . 6  |-  ( B  e.  On  ->  ( A  u.  U_ x  e. 
suc  B  suc  ( A  +o  x ) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) ) )
1615adantl 275 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  suc  B  suc  ( A  +o  x
) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) ) )
173, 16eqtrd 2203 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
suc  ( A  +o  B ) ) ) )
18 unass 3284 . . . 4  |-  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) )  u.  suc  ( A  +o  B ) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) )
1917, 18eqtr4di 2221 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) )  u.  suc  ( A  +o  B ) ) )
20 oav2 6442 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
2120uneq1d 3280 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  u.  suc  ( A  +o  B
) )  =  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x
) )  u.  suc  ( A  +o  B
) ) )
2219, 21eqtr4d 2206 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( ( A  +o  B )  u.  suc  ( A  +o  B ) ) )
23 sssucid 4400 . . 3  |-  ( A  +o  B )  C_  suc  ( A  +o  B
)
24 ssequn1 3297 . . 3  |-  ( ( A  +o  B ) 
C_  suc  ( A  +o  B )  <->  ( ( A  +o  B )  u. 
suc  ( A  +o  B ) )  =  suc  ( A  +o  B ) )
2523, 24mpbi 144 . 2  |-  ( ( A  +o  B )  u.  suc  ( A  +o  B ) )  =  suc  ( A  +o  B )
2622, 25eqtrdi 2219 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    u. cun 3119    C_ wss 3121   {csn 3583   U_ciun 3873   Oncon0 4348   suc csuc 4350  (class class class)co 5853    +o coa 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399
This theorem is referenced by:  onasuc  6445  nnaordi  6487
  Copyright terms: Public domain W3C validator