ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc Unicode version

Theorem oasuc 6610
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )

Proof of Theorem oasuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 onsuc 4593 . . . . . 6  |-  ( B  e.  On  ->  suc  B  e.  On )
2 oav2 6609 . . . . . 6  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  U_ x  e.  suc  B  suc  ( A  +o  x ) ) )
31, 2sylan2 286 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  U_ x  e. 
suc  B  suc  ( A  +o  x ) ) )
4 df-suc 4462 . . . . . . . . . 10  |-  suc  B  =  ( B  u.  { B } )
5 iuneq1 3978 . . . . . . . . . 10  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B  suc  ( A  +o  x )  = 
U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x ) )
64, 5ax-mp 5 . . . . . . . . 9  |-  U_ x  e.  suc  B  suc  ( A  +o  x )  = 
U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x )
7 iunxun 4045 . . . . . . . . 9  |-  U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
U_ x  e.  { B } suc  ( A  +o  x ) )
86, 7eqtri 2250 . . . . . . . 8  |-  U_ x  e.  suc  B  suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
U_ x  e.  { B } suc  ( A  +o  x ) )
9 oveq2 6009 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
10 suceq 4493 . . . . . . . . . . 11  |-  ( ( A  +o  x )  =  ( A  +o  B )  ->  suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
119, 10syl 14 . . . . . . . . . 10  |-  ( x  =  B  ->  suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
1211iunxsng 4041 . . . . . . . . 9  |-  ( B  e.  On  ->  U_ x  e.  { B } suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
1312uneq2d 3358 . . . . . . . 8  |-  ( B  e.  On  ->  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  U_ x  e.  { B } suc  ( A  +o  x
) )  =  (
U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) )
148, 13eqtrid 2274 . . . . . . 7  |-  ( B  e.  On  ->  U_ x  e.  suc  B  suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
suc  ( A  +o  B ) ) )
1514uneq2d 3358 . . . . . 6  |-  ( B  e.  On  ->  ( A  u.  U_ x  e. 
suc  B  suc  ( A  +o  x ) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) ) )
1615adantl 277 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  suc  B  suc  ( A  +o  x
) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) ) )
173, 16eqtrd 2262 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
suc  ( A  +o  B ) ) ) )
18 unass 3361 . . . 4  |-  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) )  u.  suc  ( A  +o  B ) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) )
1917, 18eqtr4di 2280 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) )  u.  suc  ( A  +o  B ) ) )
20 oav2 6609 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
2120uneq1d 3357 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  u.  suc  ( A  +o  B
) )  =  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x
) )  u.  suc  ( A  +o  B
) ) )
2219, 21eqtr4d 2265 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( ( A  +o  B )  u.  suc  ( A  +o  B ) ) )
23 sssucid 4506 . . 3  |-  ( A  +o  B )  C_  suc  ( A  +o  B
)
24 ssequn1 3374 . . 3  |-  ( ( A  +o  B ) 
C_  suc  ( A  +o  B )  <->  ( ( A  +o  B )  u. 
suc  ( A  +o  B ) )  =  suc  ( A  +o  B ) )
2523, 24mpbi 145 . 2  |-  ( ( A  +o  B )  u.  suc  ( A  +o  B ) )  =  suc  ( A  +o  B )
2622, 25eqtrdi 2278 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    u. cun 3195    C_ wss 3197   {csn 3666   U_ciun 3965   Oncon0 4454   suc csuc 4456  (class class class)co 6001    +o coa 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566
This theorem is referenced by:  onasuc  6612  nnaordi  6654
  Copyright terms: Public domain W3C validator