ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc Unicode version

Theorem oasuc 6368
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )

Proof of Theorem oasuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 suceloni 4425 . . . . . 6  |-  ( B  e.  On  ->  suc  B  e.  On )
2 oav2 6367 . . . . . 6  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  U_ x  e.  suc  B  suc  ( A  +o  x ) ) )
31, 2sylan2 284 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  U_ x  e. 
suc  B  suc  ( A  +o  x ) ) )
4 df-suc 4301 . . . . . . . . . 10  |-  suc  B  =  ( B  u.  { B } )
5 iuneq1 3834 . . . . . . . . . 10  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B  suc  ( A  +o  x )  = 
U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x ) )
64, 5ax-mp 5 . . . . . . . . 9  |-  U_ x  e.  suc  B  suc  ( A  +o  x )  = 
U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x )
7 iunxun 3900 . . . . . . . . 9  |-  U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
U_ x  e.  { B } suc  ( A  +o  x ) )
86, 7eqtri 2161 . . . . . . . 8  |-  U_ x  e.  suc  B  suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
U_ x  e.  { B } suc  ( A  +o  x ) )
9 oveq2 5790 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
10 suceq 4332 . . . . . . . . . . 11  |-  ( ( A  +o  x )  =  ( A  +o  B )  ->  suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
119, 10syl 14 . . . . . . . . . 10  |-  ( x  =  B  ->  suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
1211iunxsng 3896 . . . . . . . . 9  |-  ( B  e.  On  ->  U_ x  e.  { B } suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
1312uneq2d 3235 . . . . . . . 8  |-  ( B  e.  On  ->  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  U_ x  e.  { B } suc  ( A  +o  x
) )  =  (
U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) )
148, 13syl5eq 2185 . . . . . . 7  |-  ( B  e.  On  ->  U_ x  e.  suc  B  suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
suc  ( A  +o  B ) ) )
1514uneq2d 3235 . . . . . 6  |-  ( B  e.  On  ->  ( A  u.  U_ x  e. 
suc  B  suc  ( A  +o  x ) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) ) )
1615adantl 275 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  suc  B  suc  ( A  +o  x
) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) ) )
173, 16eqtrd 2173 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
suc  ( A  +o  B ) ) ) )
18 unass 3238 . . . 4  |-  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) )  u.  suc  ( A  +o  B ) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) )
1917, 18eqtr4di 2191 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) )  u.  suc  ( A  +o  B ) ) )
20 oav2 6367 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
2120uneq1d 3234 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  u.  suc  ( A  +o  B
) )  =  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x
) )  u.  suc  ( A  +o  B
) ) )
2219, 21eqtr4d 2176 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( ( A  +o  B )  u.  suc  ( A  +o  B ) ) )
23 sssucid 4345 . . 3  |-  ( A  +o  B )  C_  suc  ( A  +o  B
)
24 ssequn1 3251 . . 3  |-  ( ( A  +o  B ) 
C_  suc  ( A  +o  B )  <->  ( ( A  +o  B )  u. 
suc  ( A  +o  B ) )  =  suc  ( A  +o  B ) )
2523, 24mpbi 144 . 2  |-  ( ( A  +o  B )  u.  suc  ( A  +o  B ) )  =  suc  ( A  +o  B )
2622, 25eqtrdi 2189 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    u. cun 3074    C_ wss 3076   {csn 3532   U_ciun 3821   Oncon0 4293   suc csuc 4295  (class class class)co 5782    +o coa 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325
This theorem is referenced by:  onasuc  6370  nnaordi  6412
  Copyright terms: Public domain W3C validator