Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omsuc | Unicode version |
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
omsuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4349 | . . . . . . 7 | |
2 | iuneq1 3879 | . . . . . . 7 | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 |
4 | iunxun 3945 | . . . . . 6 | |
5 | 3, 4 | eqtri 2186 | . . . . 5 |
6 | oveq2 5850 | . . . . . . . 8 | |
7 | 6 | oveq1d 5857 | . . . . . . 7 |
8 | 7 | iunxsng 3941 | . . . . . 6 |
9 | 8 | uneq2d 3276 | . . . . 5 |
10 | 5, 9 | syl5eq 2211 | . . . 4 |
11 | 10 | adantl 275 | . . 3 |
12 | suceloni 4478 | . . . 4 | |
13 | omv2 6433 | . . . 4 | |
14 | 12, 13 | sylan2 284 | . . 3 |
15 | omv2 6433 | . . . 4 | |
16 | 15 | uneq1d 3275 | . . 3 |
17 | 11, 14, 16 | 3eqtr4d 2208 | . 2 |
18 | omcl 6429 | . . 3 | |
19 | simpl 108 | . . 3 | |
20 | oaword1 6439 | . . . 4 | |
21 | ssequn1 3292 | . . . 4 | |
22 | 20, 21 | sylib 121 | . . 3 |
23 | 18, 19, 22 | syl2anc 409 | . 2 |
24 | 17, 23 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cun 3114 wss 3116 csn 3576 ciun 3866 con0 4341 csuc 4343 (class class class)co 5842 coa 6381 comu 6382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 |
This theorem is referenced by: onmsuc 6441 |
Copyright terms: Public domain | W3C validator |