ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omsuc Unicode version

Theorem omsuc 6527
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omsuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  suc  B )  =  ( ( A  .o  B )  +o  A ) )

Proof of Theorem omsuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-suc 4403 . . . . . . 7  |-  suc  B  =  ( B  u.  { B } )
2 iuneq1 3926 . . . . . . 7  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B ( ( A  .o  x )  +o  A )  = 
U_ x  e.  ( B  u.  { B } ) ( ( A  .o  x )  +o  A ) )
31, 2ax-mp 5 . . . . . 6  |-  U_ x  e.  suc  B ( ( A  .o  x )  +o  A )  = 
U_ x  e.  ( B  u.  { B } ) ( ( A  .o  x )  +o  A )
4 iunxun 3993 . . . . . 6  |-  U_ x  e.  ( B  u.  { B } ) ( ( A  .o  x )  +o  A )  =  ( U_ x  e.  B  ( ( A  .o  x )  +o  A )  u.  U_ x  e.  { B }  ( ( A  .o  x )  +o  A ) )
53, 4eqtri 2214 . . . . 5  |-  U_ x  e.  suc  B ( ( A  .o  x )  +o  A )  =  ( U_ x  e.  B  ( ( A  .o  x )  +o  A )  u.  U_ x  e.  { B }  ( ( A  .o  x )  +o  A ) )
6 oveq2 5927 . . . . . . . 8  |-  ( x  =  B  ->  ( A  .o  x )  =  ( A  .o  B
) )
76oveq1d 5934 . . . . . . 7  |-  ( x  =  B  ->  (
( A  .o  x
)  +o  A )  =  ( ( A  .o  B )  +o  A ) )
87iunxsng 3989 . . . . . 6  |-  ( B  e.  On  ->  U_ x  e.  { B }  (
( A  .o  x
)  +o  A )  =  ( ( A  .o  B )  +o  A ) )
98uneq2d 3314 . . . . 5  |-  ( B  e.  On  ->  ( U_ x  e.  B  ( ( A  .o  x )  +o  A
)  u.  U_ x  e.  { B }  (
( A  .o  x
)  +o  A ) )  =  ( U_ x  e.  B  (
( A  .o  x
)  +o  A )  u.  ( ( A  .o  B )  +o  A ) ) )
105, 9eqtrid 2238 . . . 4  |-  ( B  e.  On  ->  U_ x  e.  suc  B ( ( A  .o  x )  +o  A )  =  ( U_ x  e.  B  ( ( A  .o  x )  +o  A )  u.  (
( A  .o  B
)  +o  A ) ) )
1110adantl 277 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  suc  B ( ( A  .o  x )  +o  A
)  =  ( U_ x  e.  B  (
( A  .o  x
)  +o  A )  u.  ( ( A  .o  B )  +o  A ) ) )
12 onsuc 4534 . . . 4  |-  ( B  e.  On  ->  suc  B  e.  On )
13 omv2 6520 . . . 4  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  .o  suc  B )  =  U_ x  e.  suc  B ( ( A  .o  x
)  +o  A ) )
1412, 13sylan2 286 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  suc  B )  =  U_ x  e.  suc  B ( ( A  .o  x )  +o  A ) )
15 omv2 6520 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )
1615uneq1d 3313 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  u.  (
( A  .o  B
)  +o  A ) )  =  ( U_ x  e.  B  (
( A  .o  x
)  +o  A )  u.  ( ( A  .o  B )  +o  A ) ) )
1711, 14, 163eqtr4d 2236 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  suc  B )  =  ( ( A  .o  B )  u.  ( ( A  .o  B )  +o  A ) ) )
18 omcl 6516 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
19 simpl 109 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  e.  On )
20 oaword1 6526 . . . 4  |-  ( ( ( A  .o  B
)  e.  On  /\  A  e.  On )  ->  ( A  .o  B
)  C_  ( ( A  .o  B )  +o  A ) )
21 ssequn1 3330 . . . 4  |-  ( ( A  .o  B ) 
C_  ( ( A  .o  B )  +o  A )  <->  ( ( A  .o  B )  u.  ( ( A  .o  B )  +o  A
) )  =  ( ( A  .o  B
)  +o  A ) )
2220, 21sylib 122 . . 3  |-  ( ( ( A  .o  B
)  e.  On  /\  A  e.  On )  ->  ( ( A  .o  B )  u.  (
( A  .o  B
)  +o  A ) )  =  ( ( A  .o  B )  +o  A ) )
2318, 19, 22syl2anc 411 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  u.  (
( A  .o  B
)  +o  A ) )  =  ( ( A  .o  B )  +o  A ) )
2417, 23eqtrd 2226 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  suc  B )  =  ( ( A  .o  B )  +o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    u. cun 3152    C_ wss 3154   {csn 3619   U_ciun 3913   Oncon0 4395   suc csuc 4397  (class class class)co 5919    +o coa 6468    .o comu 6469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476
This theorem is referenced by:  onmsuc  6528
  Copyright terms: Public domain W3C validator