Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omsuc | Unicode version |
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
omsuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4331 | . . . . . . 7 | |
2 | iuneq1 3862 | . . . . . . 7 | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 |
4 | iunxun 3928 | . . . . . 6 | |
5 | 3, 4 | eqtri 2178 | . . . . 5 |
6 | oveq2 5829 | . . . . . . . 8 | |
7 | 6 | oveq1d 5836 | . . . . . . 7 |
8 | 7 | iunxsng 3924 | . . . . . 6 |
9 | 8 | uneq2d 3261 | . . . . 5 |
10 | 5, 9 | syl5eq 2202 | . . . 4 |
11 | 10 | adantl 275 | . . 3 |
12 | suceloni 4459 | . . . 4 | |
13 | omv2 6409 | . . . 4 | |
14 | 12, 13 | sylan2 284 | . . 3 |
15 | omv2 6409 | . . . 4 | |
16 | 15 | uneq1d 3260 | . . 3 |
17 | 11, 14, 16 | 3eqtr4d 2200 | . 2 |
18 | omcl 6405 | . . 3 | |
19 | simpl 108 | . . 3 | |
20 | oaword1 6415 | . . . 4 | |
21 | ssequn1 3277 | . . . 4 | |
22 | 20, 21 | sylib 121 | . . 3 |
23 | 18, 19, 22 | syl2anc 409 | . 2 |
24 | 17, 23 | eqtrd 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cun 3100 wss 3102 csn 3560 ciun 3849 con0 4323 csuc 4325 (class class class)co 5821 coa 6357 comu 6358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-oadd 6364 df-omul 6365 |
This theorem is referenced by: onmsuc 6417 |
Copyright terms: Public domain | W3C validator |