![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrel | GIF version |
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltrel | ⊢ Rel < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelxr 7547 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
2 | relxp 4547 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 4525 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ Rel < |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 2999 × cxp 4436 Rel wrel 4443 ℝ*cxr 7521 < clt 7522 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pr 3453 df-opab 3900 df-xp 4444 df-rel 4445 df-xr 7526 df-ltxr 7527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |