| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrel | GIF version | ||
| Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltrel | ⊢ Rel < |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelxr 8175 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 2 | relxp 4805 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
| 3 | relss 4783 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ Rel < |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3177 × cxp 4694 Rel wrel 4701 ℝ*cxr 8148 < clt 8149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pr 3653 df-opab 4125 df-xp 4702 df-rel 4703 df-xr 8153 df-ltxr 8154 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |