ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrel GIF version

Theorem ltrel 8081
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltrel Rel <

Proof of Theorem ltrel
StepHypRef Expression
1 ltrelxr 8080 . 2 < ⊆ (ℝ* × ℝ*)
2 relxp 4768 . 2 Rel (ℝ* × ℝ*)
3 relss 4746 . 2 ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < ))
41, 2, 3mp2 16 1 Rel <
Colors of variables: wff set class
Syntax hints:  wss 3153   × cxp 4657  Rel wrel 4664  *cxr 8053   < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pr 3625  df-opab 4091  df-xp 4665  df-rel 4666  df-xr 8058  df-ltxr 8059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator