ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrel GIF version

Theorem ltrel 7981
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltrel Rel <

Proof of Theorem ltrel
StepHypRef Expression
1 ltrelxr 7980 . 2 < ⊆ (ℝ* × ℝ*)
2 relxp 4720 . 2 Rel (ℝ* × ℝ*)
3 relss 4698 . 2 ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < ))
41, 2, 3mp2 16 1 Rel <
Colors of variables: wff set class
Syntax hints:  wss 3121   × cxp 4609  Rel wrel 4616  *cxr 7953   < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pr 3590  df-opab 4051  df-xp 4617  df-rel 4618  df-xr 7958  df-ltxr 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator