![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrel | GIF version |
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltrel | ⊢ Rel < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelxr 8080 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
2 | relxp 4768 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 4746 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ Rel < |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3153 × cxp 4657 Rel wrel 4664 ℝ*cxr 8053 < clt 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pr 3625 df-opab 4091 df-xp 4665 df-rel 4666 df-xr 8058 df-ltxr 8059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |