ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabssxp Unicode version

Theorem opabssxp 4678
Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.)
Assertion
Ref Expression
opabssxp  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) } 
C_  ( A  X.  B )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabssxp
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  -> 
( x  e.  A  /\  y  e.  B
) )
21ssopab2i 4255 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) } 
C_  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
3 df-xp 4610 . 2  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
42, 3sseqtrri 3177 1  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) } 
C_  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 2136    C_ wss 3116   {copab 4042    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-opab 4044  df-xp 4610
This theorem is referenced by:  brab2ga  4679  dmoprabss  5924  ecopovsym  6597  ecopovtrn  6598  ecopover  6599  ecopovsymg  6600  ecopovtrng  6601  ecopoverg  6602  enqex  7301  ltrelnq  7306  enq0ex  7380  ltrelpr  7446  enrex  7678  ltrelsr  7679  ltrelre  7774  ltrelxr  7959  dvdszrcl  11732  lmfval  12832
  Copyright terms: Public domain W3C validator