ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabssxp Unicode version

Theorem opabssxp 4734
Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.)
Assertion
Ref Expression
opabssxp  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) } 
C_  ( A  X.  B )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabssxp
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  -> 
( x  e.  A  /\  y  e.  B
) )
21ssopab2i 4309 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) } 
C_  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
3 df-xp 4666 . 2  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
42, 3sseqtrri 3215 1  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) } 
C_  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2164    C_ wss 3154   {copab 4090    X. cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3160  df-ss 3167  df-opab 4092  df-xp 4666
This theorem is referenced by:  brab2ga  4735  dmoprabss  6001  ecopovsym  6687  ecopovtrn  6688  ecopover  6689  ecopovsymg  6690  ecopovtrng  6691  ecopoverg  6692  opabfi  6994  netap  7316  2omotaplemap  7319  2omotaplemst  7320  enqex  7422  ltrelnq  7427  enq0ex  7501  ltrelpr  7567  enrex  7799  ltrelsr  7800  ltrelre  7895  ltrelxr  8082  dvdszrcl  11938  prdsex  12883  releqgg  13293  eqgex  13294  aprval  13781  aprap  13785  lmfval  14371  lgsquadlemofi  15233  lgsquadlem1  15234  lgsquadlem2  15235
  Copyright terms: Public domain W3C validator