| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabssxp | Unicode version | ||
| Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | 1 | ssopab2i 4365 |
. 2
|
| 3 | df-xp 4724 |
. 2
| |
| 4 | 2, 3 | sseqtrri 3259 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: brab2ga 4793 dmoprabss 6085 ecopovsym 6776 ecopovtrn 6777 ecopover 6778 ecopovsymg 6779 ecopovtrng 6780 ecopoverg 6781 opabfi 7096 netap 7436 2omotaplemap 7439 2omotaplemst 7440 enqex 7543 ltrelnq 7548 enq0ex 7622 ltrelpr 7688 enrex 7920 ltrelsr 7921 ltrelre 8016 ltrelxr 8203 dvdszrcl 12298 prdsex 13297 prdsval 13301 prdsbaslemss 13302 releqgg 13752 eqgex 13753 aprval 14240 aprap 14244 lmfval 14860 lgsquadlemofi 15749 lgsquadlem1 15750 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |