| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabssxp | Unicode version | ||
| Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | 1 | ssopab2i 4313 |
. 2
|
| 3 | df-xp 4670 |
. 2
| |
| 4 | 2, 3 | sseqtrri 3219 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: brab2ga 4739 dmoprabss 6008 ecopovsym 6699 ecopovtrn 6700 ecopover 6701 ecopovsymg 6702 ecopovtrng 6703 ecopoverg 6704 opabfi 7008 netap 7337 2omotaplemap 7340 2omotaplemst 7341 enqex 7444 ltrelnq 7449 enq0ex 7523 ltrelpr 7589 enrex 7821 ltrelsr 7822 ltrelre 7917 ltrelxr 8104 dvdszrcl 11974 prdsex 12971 prdsval 12975 prdsbaslemss 12976 releqgg 13426 eqgex 13427 aprval 13914 aprap 13918 lmfval 14512 lgsquadlemofi 15401 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |