| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabssxp | Unicode version | ||
| Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | 1 | ssopab2i 4337 |
. 2
|
| 3 | df-xp 4694 |
. 2
| |
| 4 | 2, 3 | sseqtrri 3232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3176 df-ss 3183 df-opab 4117 df-xp 4694 |
| This theorem is referenced by: brab2ga 4763 dmoprabss 6045 ecopovsym 6736 ecopovtrn 6737 ecopover 6738 ecopovsymg 6739 ecopovtrng 6740 ecopoverg 6741 opabfi 7056 netap 7396 2omotaplemap 7399 2omotaplemst 7400 enqex 7503 ltrelnq 7508 enq0ex 7582 ltrelpr 7648 enrex 7880 ltrelsr 7881 ltrelre 7976 ltrelxr 8163 dvdszrcl 12188 prdsex 13186 prdsval 13190 prdsbaslemss 13191 releqgg 13641 eqgex 13642 aprval 14129 aprap 14133 lmfval 14749 lgsquadlemofi 15638 lgsquadlem1 15639 lgsquadlem2 15640 |
| Copyright terms: Public domain | W3C validator |