Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabssxp | Unicode version |
Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 | |
2 | 1 | ssopab2i 4255 | . 2 |
3 | df-xp 4610 | . 2 | |
4 | 2, 3 | sseqtrri 3177 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2136 wss 3116 copab 4042 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-opab 4044 df-xp 4610 |
This theorem is referenced by: brab2ga 4679 dmoprabss 5924 ecopovsym 6597 ecopovtrn 6598 ecopover 6599 ecopovsymg 6600 ecopovtrng 6601 ecopoverg 6602 enqex 7301 ltrelnq 7306 enq0ex 7380 ltrelpr 7446 enrex 7678 ltrelsr 7679 ltrelre 7774 ltrelxr 7959 dvdszrcl 11732 lmfval 12832 |
Copyright terms: Public domain | W3C validator |