| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabssxp | Unicode version | ||
| Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | 1 | ssopab2i 4312 |
. 2
|
| 3 | df-xp 4669 |
. 2
| |
| 4 | 2, 3 | sseqtrri 3218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4095 df-xp 4669 |
| This theorem is referenced by: brab2ga 4738 dmoprabss 6004 ecopovsym 6690 ecopovtrn 6691 ecopover 6692 ecopovsymg 6693 ecopovtrng 6694 ecopoverg 6695 opabfi 6999 netap 7321 2omotaplemap 7324 2omotaplemst 7325 enqex 7427 ltrelnq 7432 enq0ex 7506 ltrelpr 7572 enrex 7804 ltrelsr 7805 ltrelre 7900 ltrelxr 8087 dvdszrcl 11957 prdsex 12940 releqgg 13350 eqgex 13351 aprval 13838 aprap 13842 lmfval 14428 lgsquadlemofi 15317 lgsquadlem1 15318 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |