Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabssxp | Unicode version |
Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
opabssxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 | |
2 | 1 | ssopab2i 4262 | . 2 |
3 | df-xp 4617 | . 2 | |
4 | 2, 3 | sseqtrri 3182 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2141 wss 3121 copab 4049 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-in 3127 df-ss 3134 df-opab 4051 df-xp 4617 |
This theorem is referenced by: brab2ga 4686 dmoprabss 5935 ecopovsym 6609 ecopovtrn 6610 ecopover 6611 ecopovsymg 6612 ecopovtrng 6613 ecopoverg 6614 enqex 7322 ltrelnq 7327 enq0ex 7401 ltrelpr 7467 enrex 7699 ltrelsr 7700 ltrelre 7795 ltrelxr 7980 dvdszrcl 11754 lmfval 12986 |
Copyright terms: Public domain | W3C validator |