| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabssxp | Unicode version | ||
| Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| opabssxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | 1 | ssopab2i 4324 |
. 2
|
| 3 | df-xp 4681 |
. 2
| |
| 4 | 2, 3 | sseqtrri 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: brab2ga 4750 dmoprabss 6027 ecopovsym 6718 ecopovtrn 6719 ecopover 6720 ecopovsymg 6721 ecopovtrng 6722 ecopoverg 6723 opabfi 7035 netap 7366 2omotaplemap 7369 2omotaplemst 7370 enqex 7473 ltrelnq 7478 enq0ex 7552 ltrelpr 7618 enrex 7850 ltrelsr 7851 ltrelre 7946 ltrelxr 8133 dvdszrcl 12103 prdsex 13101 prdsval 13105 prdsbaslemss 13106 releqgg 13556 eqgex 13557 aprval 14044 aprap 14048 lmfval 14664 lgsquadlemofi 15553 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |