ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm Unicode version

Theorem cnm 7833
Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
Assertion
Ref Expression
cnm  |-  ( A  e.  CC  ->  E. x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem cnm
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4644 . . 3  |-  ( A  e.  ( R.  X.  R. )  ->  E. u E. v ( A  = 
<. u ,  v >.  /\  ( u  e.  R.  /\  v  e.  R. )
) )
2 df-c 7819 . . 3  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2272 . 2  |-  ( A  e.  CC  ->  E. u E. v ( A  = 
<. u ,  v >.  /\  ( u  e.  R.  /\  v  e.  R. )
) )
4 vex 2742 . . . . . 6  |-  u  e. 
_V
5 vex 2742 . . . . . 6  |-  v  e. 
_V
6 opm 4236 . . . . . 6  |-  ( E. x  x  e.  <. u ,  v >.  <->  ( u  e.  _V  /\  v  e. 
_V ) )
74, 5, 6mpbir2an 942 . . . . 5  |-  E. x  x  e.  <. u ,  v >.
8 simprl 529 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  A  =  <. u ,  v
>. )
98eleq2d 2247 . . . . . 6  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  (
x  e.  A  <->  x  e.  <.
u ,  v >.
) )
109exbidv 1825 . . . . 5  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  ( E. x  x  e.  A 
<->  E. x  x  e. 
<. u ,  v >.
) )
117, 10mpbiri 168 . . . 4  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  E. x  x  e.  A )
1211ex 115 . . 3  |-  ( A  e.  CC  ->  (
( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
)  ->  E. x  x  e.  A )
)
1312exlimdvv 1897 . 2  |-  ( A  e.  CC  ->  ( E. u E. v ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
)  ->  E. x  x  e.  A )
)
143, 13mpd 13 1  |-  ( A  e.  CC  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   <.cop 3597    X. cxp 4626   R.cnr 7298   CCcc 7811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634  df-c 7819
This theorem is referenced by:  axaddf  7869  axmulf  7870
  Copyright terms: Public domain W3C validator