ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm Unicode version

Theorem cnm 7773
Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
Assertion
Ref Expression
cnm  |-  ( A  e.  CC  ->  E. x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem cnm
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4620 . . 3  |-  ( A  e.  ( R.  X.  R. )  ->  E. u E. v ( A  = 
<. u ,  v >.  /\  ( u  e.  R.  /\  v  e.  R. )
) )
2 df-c 7759 . . 3  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2261 . 2  |-  ( A  e.  CC  ->  E. u E. v ( A  = 
<. u ,  v >.  /\  ( u  e.  R.  /\  v  e.  R. )
) )
4 vex 2729 . . . . . 6  |-  u  e. 
_V
5 vex 2729 . . . . . 6  |-  v  e. 
_V
6 opm 4212 . . . . . 6  |-  ( E. x  x  e.  <. u ,  v >.  <->  ( u  e.  _V  /\  v  e. 
_V ) )
74, 5, 6mpbir2an 932 . . . . 5  |-  E. x  x  e.  <. u ,  v >.
8 simprl 521 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  A  =  <. u ,  v
>. )
98eleq2d 2236 . . . . . 6  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  (
x  e.  A  <->  x  e.  <.
u ,  v >.
) )
109exbidv 1813 . . . . 5  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  ( E. x  x  e.  A 
<->  E. x  x  e. 
<. u ,  v >.
) )
117, 10mpbiri 167 . . . 4  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  E. x  x  e.  A )
1211ex 114 . . 3  |-  ( A  e.  CC  ->  (
( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
)  ->  E. x  x  e.  A )
)
1312exlimdvv 1885 . 2  |-  ( A  e.  CC  ->  ( E. u E. v ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
)  ->  E. x  x  e.  A )
)
143, 13mpd 13 1  |-  ( A  e.  CC  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726   <.cop 3579    X. cxp 4602   R.cnr 7238   CCcc 7751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-c 7759
This theorem is referenced by:  axaddf  7809  axmulf  7810
  Copyright terms: Public domain W3C validator