ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm Unicode version

Theorem cnm 7860
Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
Assertion
Ref Expression
cnm  |-  ( A  e.  CC  ->  E. x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem cnm
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4660 . . 3  |-  ( A  e.  ( R.  X.  R. )  ->  E. u E. v ( A  = 
<. u ,  v >.  /\  ( u  e.  R.  /\  v  e.  R. )
) )
2 df-c 7846 . . 3  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2284 . 2  |-  ( A  e.  CC  ->  E. u E. v ( A  = 
<. u ,  v >.  /\  ( u  e.  R.  /\  v  e.  R. )
) )
4 vex 2755 . . . . . 6  |-  u  e. 
_V
5 vex 2755 . . . . . 6  |-  v  e. 
_V
6 opm 4252 . . . . . 6  |-  ( E. x  x  e.  <. u ,  v >.  <->  ( u  e.  _V  /\  v  e. 
_V ) )
74, 5, 6mpbir2an 944 . . . . 5  |-  E. x  x  e.  <. u ,  v >.
8 simprl 529 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  A  =  <. u ,  v
>. )
98eleq2d 2259 . . . . . 6  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  (
x  e.  A  <->  x  e.  <.
u ,  v >.
) )
109exbidv 1836 . . . . 5  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  ( E. x  x  e.  A 
<->  E. x  x  e. 
<. u ,  v >.
) )
117, 10mpbiri 168 . . . 4  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  E. x  x  e.  A )
1211ex 115 . . 3  |-  ( A  e.  CC  ->  (
( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
)  ->  E. x  x  e.  A )
)
1312exlimdvv 1909 . 2  |-  ( A  e.  CC  ->  ( E. u E. v ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
)  ->  E. x  x  e.  A )
)
143, 13mpd 13 1  |-  ( A  e.  CC  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   _Vcvv 2752   <.cop 3610    X. cxp 4642   R.cnr 7325   CCcc 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-xp 4650  df-c 7846
This theorem is referenced by:  axaddf  7896  axmulf  7897
  Copyright terms: Public domain W3C validator