ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm Unicode version

Theorem cnm 7806
Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
Assertion
Ref Expression
cnm  |-  ( A  e.  CC  ->  E. x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem cnm
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4636 . . 3  |-  ( A  e.  ( R.  X.  R. )  ->  E. u E. v ( A  = 
<. u ,  v >.  /\  ( u  e.  R.  /\  v  e.  R. )
) )
2 df-c 7792 . . 3  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2270 . 2  |-  ( A  e.  CC  ->  E. u E. v ( A  = 
<. u ,  v >.  /\  ( u  e.  R.  /\  v  e.  R. )
) )
4 vex 2738 . . . . . 6  |-  u  e. 
_V
5 vex 2738 . . . . . 6  |-  v  e. 
_V
6 opm 4228 . . . . . 6  |-  ( E. x  x  e.  <. u ,  v >.  <->  ( u  e.  _V  /\  v  e. 
_V ) )
74, 5, 6mpbir2an 942 . . . . 5  |-  E. x  x  e.  <. u ,  v >.
8 simprl 529 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  A  =  <. u ,  v
>. )
98eleq2d 2245 . . . . . 6  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  (
x  e.  A  <->  x  e.  <.
u ,  v >.
) )
109exbidv 1823 . . . . 5  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  ( E. x  x  e.  A 
<->  E. x  x  e. 
<. u ,  v >.
) )
117, 10mpbiri 168 . . . 4  |-  ( ( A  e.  CC  /\  ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
) )  ->  E. x  x  e.  A )
1211ex 115 . . 3  |-  ( A  e.  CC  ->  (
( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
)  ->  E. x  x  e.  A )
)
1312exlimdvv 1895 . 2  |-  ( A  e.  CC  ->  ( E. u E. v ( A  =  <. u ,  v >.  /\  (
u  e.  R.  /\  v  e.  R. )
)  ->  E. x  x  e.  A )
)
143, 13mpd 13 1  |-  ( A  e.  CC  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1490    e. wcel 2146   _Vcvv 2735   <.cop 3592    X. cxp 4618   R.cnr 7271   CCcc 7784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-opab 4060  df-xp 4626  df-c 7792
This theorem is referenced by:  axaddf  7842  axmulf  7843
  Copyright terms: Public domain W3C validator