ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcnsr Unicode version

Theorem addcnsr 7434
Description: Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
Assertion
Ref Expression
addcnsr  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D )
>. )

Proof of Theorem addcnsr
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclsr 7362 . . . 4  |-  ( ( A  e.  R.  /\  C  e.  R. )  ->  ( A  +R  C
)  e.  R. )
21ad2ant2r 494 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  +R  C )  e.  R. )
3 addclsr 7362 . . . 4  |-  ( ( B  e.  R.  /\  D  e.  R. )  ->  ( B  +R  D
)  e.  R. )
43ad2ant2l 493 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  +R  D )  e.  R. )
5 opelxpi 4485 . . 3  |-  ( ( ( A  +R  C
)  e.  R.  /\  ( B  +R  D
)  e.  R. )  -> 
<. ( A  +R  C
) ,  ( B  +R  D ) >.  e.  ( R.  X.  R. ) )
62, 4, 5syl2anc 404 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  <. ( A  +R  C ) ,  ( B  +R  D
) >.  e.  ( R. 
X.  R. ) )
7 simpll 497 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  w  =  A )
8 simprl 499 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  u  =  C )
97, 8oveq12d 5686 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( w  +R  u
)  =  ( A  +R  C ) )
10 simplr 498 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
v  =  B )
11 simprr 500 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
f  =  D )
1210, 11oveq12d 5686 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( v  +R  f
)  =  ( B  +R  D ) )
139, 12opeq12d 3638 . 2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  <. ( w  +R  u
) ,  ( v  +R  f ) >.  =  <. ( A  +R  C ) ,  ( B  +R  D )
>. )
14 df-add 7424 . . 3  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
15 df-c 7419 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
1615eleq2i 2155 . . . . . 6  |-  ( x  e.  CC  <->  x  e.  ( R.  X.  R. )
)
1715eleq2i 2155 . . . . . 6  |-  ( y  e.  CC  <->  y  e.  ( R.  X.  R. )
)
1816, 17anbi12i 449 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  <->  ( x  e.  ( R. 
X.  R. )  /\  y  e.  ( R.  X.  R. ) ) )
1918anbi1i 447 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)  <->  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
2019oprabbii 5720 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
2114, 20eqtri 2109 . 2  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
226, 13, 21ovi3 5797 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D )
>. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290   E.wex 1427    e. wcel 1439   <.cop 3455    X. cxp 4452  (class class class)co 5668   {coprab 5669   R.cnr 6919    +R cplr 6923   CCcc 7411    + caddc 7416
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-eprel 4127  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-irdg 6151  df-1o 6197  df-2o 6198  df-oadd 6201  df-omul 6202  df-er 6308  df-ec 6310  df-qs 6314  df-ni 6926  df-pli 6927  df-mi 6928  df-lti 6929  df-plpq 6966  df-mpq 6967  df-enq 6969  df-nqqs 6970  df-plqqs 6971  df-mqqs 6972  df-1nqqs 6973  df-rq 6974  df-ltnqqs 6975  df-enq0 7046  df-nq0 7047  df-0nq0 7048  df-plq0 7049  df-mq0 7050  df-inp 7088  df-iplp 7090  df-enr 7335  df-nr 7336  df-plr 7337  df-c 7419  df-add 7424
This theorem is referenced by:  addresr  7437  addcnsrec  7442  axaddcl  7464  axaddcom  7468  ax0id  7476  axcnre  7479
  Copyright terms: Public domain W3C validator