| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelre | GIF version | ||
| Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelre | ⊢ <ℝ ⊆ (ℝ × ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lt 7968 | . 2 ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | |
| 2 | opabssxp 4762 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ) | |
| 3 | 1, 2 | eqsstri 3229 | 1 ⊢ <ℝ ⊆ (ℝ × ℝ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3170 〈cop 3641 class class class wbr 4054 {copab 4115 × cxp 4686 0Rc0r 7441 <R cltr 7446 ℝcr 7954 <ℝ cltrr 7959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3176 df-ss 3183 df-opab 4117 df-xp 4694 df-lt 7968 |
| This theorem is referenced by: ltresr 7982 |
| Copyright terms: Public domain | W3C validator |