| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelre | GIF version | ||
| Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelre | ⊢ <ℝ ⊆ (ℝ × ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lt 8008 | . 2 ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | |
| 2 | opabssxp 4792 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ) | |
| 3 | 1, 2 | eqsstri 3256 | 1 ⊢ <ℝ ⊆ (ℝ × ℝ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 〈cop 3669 class class class wbr 4082 {copab 4143 × cxp 4716 0Rc0r 7481 <R cltr 7486 ℝcr 7994 <ℝ cltrr 7999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-opab 4145 df-xp 4724 df-lt 8008 |
| This theorem is referenced by: ltresr 8022 |
| Copyright terms: Public domain | W3C validator |