![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelre | GIF version |
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
ltrelre | ⊢ <ℝ ⊆ (ℝ × ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lt 7885 | . 2 ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | |
2 | opabssxp 4733 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ) | |
3 | 1, 2 | eqsstri 3211 | 1 ⊢ <ℝ ⊆ (ℝ × ℝ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3153 〈cop 3621 class class class wbr 4029 {copab 4089 × cxp 4657 0Rc0r 7358 <R cltr 7363 ℝcr 7871 <ℝ cltrr 7876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-opab 4091 df-xp 4665 df-lt 7885 |
This theorem is referenced by: ltresr 7899 |
Copyright terms: Public domain | W3C validator |