![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelre | GIF version |
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
ltrelre | ⊢ <ℝ ⊆ (ℝ × ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lt 7460 | . 2 ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | |
2 | opabssxp 4541 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ) | |
3 | 1, 2 | eqsstri 3071 | 1 ⊢ <ℝ ⊆ (ℝ × ℝ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1296 ∃wex 1433 ∈ wcel 1445 ⊆ wss 3013 〈cop 3469 class class class wbr 3867 {copab 3920 × cxp 4465 0Rc0r 6954 <R cltr 6959 ℝcr 7446 <ℝ cltrr 7451 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-in 3019 df-ss 3026 df-opab 3922 df-xp 4473 df-lt 7460 |
This theorem is referenced by: ltresr 7473 |
Copyright terms: Public domain | W3C validator |