ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moriotass Unicode version

Theorem moriotass 5849
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
moriotass  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem moriotass
StepHypRef Expression
1 ssrexv 3218 . . . . 5  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
21imp 124 . . . 4  |-  ( ( A  C_  B  /\  E. x  e.  A  ph )  ->  E. x  e.  B  ph )
323adant3 1017 . . 3  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E. x  e.  B  ph )
4 simp3 999 . . 3  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E* x  e.  B  ph )
5 reu5 2687 . . 3  |-  ( E! x  e.  B  ph  <->  ( E. x  e.  B  ph 
/\  E* x  e.  B  ph ) )
63, 4, 5sylanbrc 417 . 2  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E! x  e.  B  ph )
7 riotass 5848 . 2  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
86, 7syld3an3 1283 1  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353   E.wrex 2454   E!wreu 2455   E*wrmo 2456    C_ wss 3127   iota_crio 5820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-uni 3806  df-iota 5170  df-riota 5821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator