Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moriotass | Unicode version |
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
moriotass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 3207 | . . . . 5 | |
2 | 1 | imp 123 | . . . 4 |
3 | 2 | 3adant3 1007 | . . 3 |
4 | simp3 989 | . . 3 | |
5 | reu5 2678 | . . 3 | |
6 | 3, 4, 5 | sylanbrc 414 | . 2 |
7 | riotass 5825 | . 2 | |
8 | 6, 7 | syld3an3 1273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 wceq 1343 wrex 2445 wreu 2446 wrmo 2447 wss 3116 crio 5797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 df-riota 5798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |