Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moriotass | Unicode version |
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
moriotass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 3212 | . . . . 5 | |
2 | 1 | imp 123 | . . . 4 |
3 | 2 | 3adant3 1012 | . . 3 |
4 | simp3 994 | . . 3 | |
5 | reu5 2682 | . . 3 | |
6 | 3, 4, 5 | sylanbrc 415 | . 2 |
7 | riotass 5836 | . 2 | |
8 | 6, 7 | syld3an3 1278 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 wrex 2449 wreu 2450 wrmo 2451 wss 3121 crio 5808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 df-riota 5809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |