ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moriotass Unicode version

Theorem moriotass 5859
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
moriotass  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem moriotass
StepHypRef Expression
1 ssrexv 3221 . . . . 5  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
21imp 124 . . . 4  |-  ( ( A  C_  B  /\  E. x  e.  A  ph )  ->  E. x  e.  B  ph )
323adant3 1017 . . 3  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E. x  e.  B  ph )
4 simp3 999 . . 3  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E* x  e.  B  ph )
5 reu5 2690 . . 3  |-  ( E! x  e.  B  ph  <->  ( E. x  e.  B  ph 
/\  E* x  e.  B  ph ) )
63, 4, 5sylanbrc 417 . 2  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E! x  e.  B  ph )
7 riotass 5858 . 2  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
86, 7syld3an3 1283 1  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353   E.wrex 2456   E!wreu 2457   E*wrmo 2458    C_ wss 3130   iota_crio 5830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-uni 3811  df-iota 5179  df-riota 5831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator