ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpompt Unicode version

Theorem mpompt 5943
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
Assertion
Ref Expression
mpompt  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Distinct variable groups:    x, y, z, A    y, B, z   
x, C, y    z, D    x, B
Allowed substitution hints:    C( z)    D( x, y)

Proof of Theorem mpompt
StepHypRef Expression
1 iunxpconst 4669 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
2 mpteq1 4071 . . 3  |-  ( U_ x  e.  A  ( { x }  X.  B )  =  ( A  X.  B )  ->  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  C ) )
31, 2ax-mp 5 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( z  e.  ( A  X.  B )  |->  C )
4 mpompt.1 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
54mpomptx 5942 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
63, 5eqtr3i 2193 1  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   {csn 3581   <.cop 3584   U_ciun 3871    |-> cmpt 4048    X. cxp 4607    e. cmpo 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-iun 3873  df-opab 4049  df-mpt 4050  df-xp 4615  df-rel 4616  df-oprab 5855  df-mpo 5856
This theorem is referenced by:  fconstmpo  5946  fnovim  5959  fmpoco  6193  xpf1o  6820  txbas  13017  cnmpt1st  13047  cnmpt2nd  13048  cnmpt2c  13049  cnmpt2t  13052  txhmeo  13078  txswaphmeolem  13079
  Copyright terms: Public domain W3C validator