Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpompt Unicode version

Theorem mpompt 5870
 Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1
Assertion
Ref Expression
mpompt
Distinct variable groups:   ,,,   ,,   ,,   ,   ,
Allowed substitution hints:   ()   (,)

Proof of Theorem mpompt
StepHypRef Expression
1 iunxpconst 4606 . . 3
2 mpteq1 4019 . . 3
31, 2ax-mp 5 . 2
4 mpompt.1 . . 3
54mpomptx 5869 . 2
63, 5eqtr3i 2163 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1332  csn 3531  cop 3534  ciun 3820   cmpt 3996   cxp 4544   cmpo 5783 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2913  df-csb 3007  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-iun 3822  df-opab 3997  df-mpt 3998  df-xp 4552  df-rel 4553  df-oprab 5785  df-mpo 5786 This theorem is referenced by:  fconstmpo  5873  fnovim  5886  fmpoco  6120  xpf1o  6745  txbas  12464  cnmpt1st  12494  cnmpt2nd  12495  cnmpt2c  12496  cnmpt2t  12499  txhmeo  12525  txswaphmeolem  12526
 Copyright terms: Public domain W3C validator