| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpompt | Unicode version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpompt.1 |
|
| Ref | Expression |
|---|---|
| mpompt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 4733 |
. . 3
| |
| 2 | mpteq1 4127 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | mpompt.1 |
. . 3
| |
| 5 | 4 | mpomptx 6026 |
. 2
|
| 6 | 3, 5 | eqtr3i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-iun 3928 df-opab 4105 df-mpt 4106 df-xp 4679 df-rel 4680 df-oprab 5938 df-mpo 5939 |
| This theorem is referenced by: fconstmpo 6030 fnovim 6044 fmpoco 6292 xpf1o 6923 txbas 14648 cnmpt1st 14678 cnmpt2nd 14679 cnmpt2c 14680 cnmpt2t 14683 txhmeo 14709 txswaphmeolem 14710 |
| Copyright terms: Public domain | W3C validator |