Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpompt | Unicode version |
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mpompt.1 |
Ref | Expression |
---|---|
mpompt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 4664 | . . 3 | |
2 | mpteq1 4066 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | mpompt.1 | . . 3 | |
5 | 4 | mpomptx 5933 | . 2 |
6 | 3, 5 | eqtr3i 2188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 csn 3576 cop 3579 ciun 3866 cmpt 4043 cxp 4602 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-opab 4044 df-mpt 4045 df-xp 4610 df-rel 4611 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: fconstmpo 5937 fnovim 5950 fmpoco 6184 xpf1o 6810 txbas 12898 cnmpt1st 12928 cnmpt2nd 12929 cnmpt2c 12930 cnmpt2t 12933 txhmeo 12959 txswaphmeolem 12960 |
Copyright terms: Public domain | W3C validator |