Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dif1enen | Unicode version |
Description: Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.) |
Ref | Expression |
---|---|
dif1enen.a | |
dif1enen.ab | |
dif1enen.c | |
dif1enen.d |
Ref | Expression |
---|---|
dif1enen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif1enen.a | . . 3 | |
2 | isfi 6703 | . . 3 | |
3 | 1, 2 | sylib 121 | . 2 |
4 | simplrr 526 | . . . . . 6 | |
5 | breq2 3969 | . . . . . . 7 | |
6 | 5 | adantl 275 | . . . . . 6 |
7 | 4, 6 | mpbid 146 | . . . . 5 |
8 | en0 6737 | . . . . 5 | |
9 | 7, 8 | sylib 121 | . . . 4 |
10 | dif1enen.c | . . . . . 6 | |
11 | n0i 3399 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 |
13 | 12 | ad2antrr 480 | . . . 4 |
14 | 9, 13 | pm2.21dd 610 | . . 3 |
15 | simplr 520 | . . . . . . . 8 | |
16 | simprr 522 | . . . . . . . . . 10 | |
17 | 16 | ad2antrr 480 | . . . . . . . . 9 |
18 | breq2 3969 | . . . . . . . . . 10 | |
19 | 18 | adantl 275 | . . . . . . . . 9 |
20 | 17, 19 | mpbid 146 | . . . . . . . 8 |
21 | 10 | ad3antrrr 484 | . . . . . . . 8 |
22 | dif1en 6821 | . . . . . . . 8 | |
23 | 15, 20, 21, 22 | syl3anc 1220 | . . . . . . 7 |
24 | dif1enen.ab | . . . . . . . . . . . 12 | |
25 | 24 | ad3antrrr 484 | . . . . . . . . . . 11 |
26 | 25 | ensymd 6725 | . . . . . . . . . 10 |
27 | entr 6726 | . . . . . . . . . 10 | |
28 | 26, 20, 27 | syl2anc 409 | . . . . . . . . 9 |
29 | dif1enen.d | . . . . . . . . . 10 | |
30 | 29 | ad3antrrr 484 | . . . . . . . . 9 |
31 | dif1en 6821 | . . . . . . . . 9 | |
32 | 15, 28, 30, 31 | syl3anc 1220 | . . . . . . . 8 |
33 | 32 | ensymd 6725 | . . . . . . 7 |
34 | entr 6726 | . . . . . . 7 | |
35 | 23, 33, 34 | syl2anc 409 | . . . . . 6 |
36 | 35 | ex 114 | . . . . 5 |
37 | 36 | rexlimdva 2574 | . . . 4 |
38 | 37 | imp 123 | . . 3 |
39 | nn0suc 4562 | . . . 4 | |
40 | 39 | ad2antrl 482 | . . 3 |
41 | 14, 38, 40 | mpjaodan 788 | . 2 |
42 | 3, 41 | rexlimddv 2579 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1335 wcel 2128 wrex 2436 cdif 3099 c0 3394 csn 3560 class class class wbr 3965 csuc 4325 com 4548 cen 6680 cfn 6682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-er 6477 df-en 6683 df-fin 6685 |
This theorem is referenced by: fisseneq 6873 |
Copyright terms: Public domain | W3C validator |