ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1enen Unicode version

Theorem dif1enen 6822
Description: Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
Hypotheses
Ref Expression
dif1enen.a  |-  ( ph  ->  A  e.  Fin )
dif1enen.ab  |-  ( ph  ->  A  ~~  B )
dif1enen.c  |-  ( ph  ->  C  e.  A )
dif1enen.d  |-  ( ph  ->  D  e.  B )
Assertion
Ref Expression
dif1enen  |-  ( ph  ->  ( A  \  { C } )  ~~  ( B  \  { D }
) )

Proof of Theorem dif1enen
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dif1enen.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 isfi 6703 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
31, 2sylib 121 . 2  |-  ( ph  ->  E. n  e.  om  A  ~~  n )
4 simplrr 526 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n
)
5 breq2 3969 . . . . . . 7  |-  ( n  =  (/)  ->  ( A 
~~  n  <->  A  ~~  (/) ) )
65adantl 275 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  ( A  ~~  n 
<->  A  ~~  (/) ) )
74, 6mpbid 146 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
8 en0 6737 . . . . 5  |-  ( A 
~~  (/)  <->  A  =  (/) )
97, 8sylib 121 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
10 dif1enen.c . . . . . 6  |-  ( ph  ->  C  e.  A )
11 n0i 3399 . . . . . 6  |-  ( C  e.  A  ->  -.  A  =  (/) )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  -.  A  =  (/) )
1312ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  -.  A  =  (/) )
149, 13pm2.21dd 610 . . 3  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  ( A  \  { C } )  ~~  ( B  \  { D } ) )
15 simplr 520 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  m  e.  om )
16 simprr 522 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
1716ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  n )
18 breq2 3969 . . . . . . . . . 10  |-  ( n  =  suc  m  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
1918adantl 275 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
2017, 19mpbid 146 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  suc  m )
2110ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  C  e.  A )
22 dif1en 6821 . . . . . . . 8  |-  ( ( m  e.  om  /\  A  ~~  suc  m  /\  C  e.  A )  ->  ( A  \  { C } )  ~~  m
)
2315, 20, 21, 22syl3anc 1220 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  \  { C } )  ~~  m
)
24 dif1enen.ab . . . . . . . . . . . 12  |-  ( ph  ->  A  ~~  B )
2524ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  B )
2625ensymd 6725 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  B  ~~  A )
27 entr 6726 . . . . . . . . . 10  |-  ( ( B  ~~  A  /\  A  ~~  suc  m )  ->  B  ~~  suc  m )
2826, 20, 27syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  B  ~~  suc  m )
29 dif1enen.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  B )
3029ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  D  e.  B )
31 dif1en 6821 . . . . . . . . 9  |-  ( ( m  e.  om  /\  B  ~~  suc  m  /\  D  e.  B )  ->  ( B  \  { D } )  ~~  m
)
3215, 28, 30, 31syl3anc 1220 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( B  \  { D } )  ~~  m
)
3332ensymd 6725 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  m  ~~  ( B  \  { D } ) )
34 entr 6726 . . . . . . 7  |-  ( ( ( A  \  { C } )  ~~  m  /\  m  ~~  ( B 
\  { D }
) )  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) )
3523, 33, 34syl2anc 409 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  \  { C } )  ~~  ( B  \  { D }
) )
3635ex 114 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  ->  ( n  =  suc  m  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) ) )
3736rexlimdva 2574 . . . 4  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( E. m  e. 
om  n  =  suc  m  ->  ( A  \  { C } )  ~~  ( B  \  { D } ) ) )
3837imp 123 . . 3  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  E. m  e. 
om  n  =  suc  m )  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) )
39 nn0suc 4562 . . . 4  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
4039ad2antrl 482 . . 3  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( n  =  (/)  \/ 
E. m  e.  om  n  =  suc  m ) )
4114, 38, 40mpjaodan 788 . 2  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  \  { C } )  ~~  ( B  \  { D }
) )
423, 41rexlimddv 2579 1  |-  ( ph  ->  ( A  \  { C } )  ~~  ( B  \  { D }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1335    e. wcel 2128   E.wrex 2436    \ cdif 3099   (/)c0 3394   {csn 3560   class class class wbr 3965   suc csuc 4325   omcom 4548    ~~ cen 6680   Fincfn 6682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-er 6477  df-en 6683  df-fin 6685
This theorem is referenced by:  fisseneq  6873
  Copyright terms: Public domain W3C validator