ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1enen Unicode version

Theorem dif1enen 7042
Description: Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
Hypotheses
Ref Expression
dif1enen.a  |-  ( ph  ->  A  e.  Fin )
dif1enen.ab  |-  ( ph  ->  A  ~~  B )
dif1enen.c  |-  ( ph  ->  C  e.  A )
dif1enen.d  |-  ( ph  ->  D  e.  B )
Assertion
Ref Expression
dif1enen  |-  ( ph  ->  ( A  \  { C } )  ~~  ( B  \  { D }
) )

Proof of Theorem dif1enen
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dif1enen.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 isfi 6912 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
31, 2sylib 122 . 2  |-  ( ph  ->  E. n  e.  om  A  ~~  n )
4 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n
)
5 breq2 4087 . . . . . . 7  |-  ( n  =  (/)  ->  ( A 
~~  n  <->  A  ~~  (/) ) )
65adantl 277 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  ( A  ~~  n 
<->  A  ~~  (/) ) )
74, 6mpbid 147 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
8 en0 6947 . . . . 5  |-  ( A 
~~  (/)  <->  A  =  (/) )
97, 8sylib 122 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
10 dif1enen.c . . . . . 6  |-  ( ph  ->  C  e.  A )
11 n0i 3497 . . . . . 6  |-  ( C  e.  A  ->  -.  A  =  (/) )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  -.  A  =  (/) )
1312ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  -.  A  =  (/) )
149, 13pm2.21dd 623 . . 3  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  ( A  \  { C } )  ~~  ( B  \  { D } ) )
15 simplr 528 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  m  e.  om )
16 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
1716ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  n )
18 breq2 4087 . . . . . . . . . 10  |-  ( n  =  suc  m  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
1918adantl 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
2017, 19mpbid 147 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  suc  m )
2110ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  C  e.  A )
22 dif1en 7041 . . . . . . . 8  |-  ( ( m  e.  om  /\  A  ~~  suc  m  /\  C  e.  A )  ->  ( A  \  { C } )  ~~  m
)
2315, 20, 21, 22syl3anc 1271 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  \  { C } )  ~~  m
)
24 dif1enen.ab . . . . . . . . . . . 12  |-  ( ph  ->  A  ~~  B )
2524ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  B )
2625ensymd 6935 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  B  ~~  A )
27 entr 6936 . . . . . . . . . 10  |-  ( ( B  ~~  A  /\  A  ~~  suc  m )  ->  B  ~~  suc  m )
2826, 20, 27syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  B  ~~  suc  m )
29 dif1enen.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  B )
3029ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  D  e.  B )
31 dif1en 7041 . . . . . . . . 9  |-  ( ( m  e.  om  /\  B  ~~  suc  m  /\  D  e.  B )  ->  ( B  \  { D } )  ~~  m
)
3215, 28, 30, 31syl3anc 1271 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( B  \  { D } )  ~~  m
)
3332ensymd 6935 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  m  ~~  ( B  \  { D } ) )
34 entr 6936 . . . . . . 7  |-  ( ( ( A  \  { C } )  ~~  m  /\  m  ~~  ( B 
\  { D }
) )  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) )
3523, 33, 34syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  \  { C } )  ~~  ( B  \  { D }
) )
3635ex 115 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  ->  ( n  =  suc  m  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) ) )
3736rexlimdva 2648 . . . 4  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( E. m  e. 
om  n  =  suc  m  ->  ( A  \  { C } )  ~~  ( B  \  { D } ) ) )
3837imp 124 . . 3  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  E. m  e. 
om  n  =  suc  m )  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) )
39 nn0suc 4696 . . . 4  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
4039ad2antrl 490 . . 3  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( n  =  (/)  \/ 
E. m  e.  om  n  =  suc  m ) )
4114, 38, 40mpjaodan 803 . 2  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  \  { C } )  ~~  ( B  \  { D }
) )
423, 41rexlimddv 2653 1  |-  ( ph  ->  ( A  \  { C } )  ~~  ( B  \  { D }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   E.wrex 2509    \ cdif 3194   (/)c0 3491   {csn 3666   class class class wbr 4083   suc csuc 4456   omcom 4682    ~~ cen 6885   Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6680  df-en 6888  df-fin 6890
This theorem is referenced by:  fisseneq  7096
  Copyright terms: Public domain W3C validator