ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1enen Unicode version

Theorem dif1enen 6703
Description: Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
Hypotheses
Ref Expression
dif1enen.a  |-  ( ph  ->  A  e.  Fin )
dif1enen.ab  |-  ( ph  ->  A  ~~  B )
dif1enen.c  |-  ( ph  ->  C  e.  A )
dif1enen.d  |-  ( ph  ->  D  e.  B )
Assertion
Ref Expression
dif1enen  |-  ( ph  ->  ( A  \  { C } )  ~~  ( B  \  { D }
) )

Proof of Theorem dif1enen
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dif1enen.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 isfi 6585 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
31, 2sylib 121 . 2  |-  ( ph  ->  E. n  e.  om  A  ~~  n )
4 simplrr 506 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n
)
5 breq2 3879 . . . . . . 7  |-  ( n  =  (/)  ->  ( A 
~~  n  <->  A  ~~  (/) ) )
65adantl 273 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  ( A  ~~  n 
<->  A  ~~  (/) ) )
74, 6mpbid 146 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
8 en0 6619 . . . . 5  |-  ( A 
~~  (/)  <->  A  =  (/) )
97, 8sylib 121 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
10 dif1enen.c . . . . . 6  |-  ( ph  ->  C  e.  A )
11 n0i 3315 . . . . . 6  |-  ( C  e.  A  ->  -.  A  =  (/) )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  -.  A  =  (/) )
1312ad2antrr 475 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  -.  A  =  (/) )
149, 13pm2.21dd 590 . . 3  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  ( A  \  { C } )  ~~  ( B  \  { D } ) )
15 simplr 500 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  m  e.  om )
16 simprr 502 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
1716ad2antrr 475 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  n )
18 breq2 3879 . . . . . . . . . 10  |-  ( n  =  suc  m  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
1918adantl 273 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
2017, 19mpbid 146 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  suc  m )
2110ad3antrrr 479 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  C  e.  A )
22 dif1en 6702 . . . . . . . 8  |-  ( ( m  e.  om  /\  A  ~~  suc  m  /\  C  e.  A )  ->  ( A  \  { C } )  ~~  m
)
2315, 20, 21, 22syl3anc 1184 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  \  { C } )  ~~  m
)
24 dif1enen.ab . . . . . . . . . . . 12  |-  ( ph  ->  A  ~~  B )
2524ad3antrrr 479 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  A  ~~  B )
2625ensymd 6607 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  B  ~~  A )
27 entr 6608 . . . . . . . . . 10  |-  ( ( B  ~~  A  /\  A  ~~  suc  m )  ->  B  ~~  suc  m )
2826, 20, 27syl2anc 406 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  B  ~~  suc  m )
29 dif1enen.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  B )
3029ad3antrrr 479 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  D  e.  B )
31 dif1en 6702 . . . . . . . . 9  |-  ( ( m  e.  om  /\  B  ~~  suc  m  /\  D  e.  B )  ->  ( B  \  { D } )  ~~  m
)
3215, 28, 30, 31syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( B  \  { D } )  ~~  m
)
3332ensymd 6607 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  ->  m  ~~  ( B  \  { D } ) )
34 entr 6608 . . . . . . 7  |-  ( ( ( A  \  { C } )  ~~  m  /\  m  ~~  ( B 
\  { D }
) )  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) )
3523, 33, 34syl2anc 406 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  /\  n  =  suc  m )  -> 
( A  \  { C } )  ~~  ( B  \  { D }
) )
3635ex 114 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  ->  ( n  =  suc  m  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) ) )
3736rexlimdva 2508 . . . 4  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( E. m  e. 
om  n  =  suc  m  ->  ( A  \  { C } )  ~~  ( B  \  { D } ) ) )
3837imp 123 . . 3  |-  ( ( ( ph  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  E. m  e. 
om  n  =  suc  m )  ->  ( A  \  { C }
)  ~~  ( B  \  { D } ) )
39 nn0suc 4456 . . . 4  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
4039ad2antrl 477 . . 3  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( n  =  (/)  \/ 
E. m  e.  om  n  =  suc  m ) )
4114, 38, 40mpjaodan 753 . 2  |-  ( (
ph  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  \  { C } )  ~~  ( B  \  { D }
) )
423, 41rexlimddv 2513 1  |-  ( ph  ->  ( A  \  { C } )  ~~  ( B  \  { D }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670    = wceq 1299    e. wcel 1448   E.wrex 2376    \ cdif 3018   (/)c0 3310   {csn 3474   class class class wbr 3875   suc csuc 4225   omcom 4442    ~~ cen 6562   Fincfn 6564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-er 6359  df-en 6565  df-fin 6567
This theorem is referenced by:  fisseneq  6749
  Copyright terms: Public domain W3C validator