ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm00 Unicode version

Theorem nnm00 6530
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
Assertion
Ref Expression
nnm00  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )

Proof of Theorem nnm00
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  A  =  (/) )
2 simpl 109 . . . . . . 7  |-  ( ( A  =  (/)  /\  (/)  e.  B
)  ->  A  =  (/) )
31, 2jaoi 716 . . . . . 6  |-  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B ) )  ->  A  =  (/) )
43orcd 733 . . . . 5  |-  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B ) )  ->  ( A  =  (/)  \/  B  =  (/) ) )
54a1i 9 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B
) )  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
6 simpr 110 . . . . . . 7  |-  ( (
(/)  e.  A  /\  B  =  (/) )  ->  B  =  (/) )
76olcd 734 . . . . . 6  |-  ( (
(/)  e.  A  /\  B  =  (/) )  -> 
( A  =  (/)  \/  B  =  (/) ) )
87a1i 9 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( (/)  e.  A  /\  B  =  (/) )  -> 
( A  =  (/)  \/  B  =  (/) ) ) )
9 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  ( A  .o  B )  =  (/) )  /\  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  ( A  .o  B )  =  (/) )
10 nnmordi 6516 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  om  /\  A  e.  om )  /\  (/)  e.  A )  ->  ( (/)  e.  B  ->  ( A  .o  (/) )  e.  ( A  .o  B
) ) )
1110expimpd 363 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( (/)  e.  A  /\  (/)  e.  B )  ->  ( A  .o  (/) )  e.  ( A  .o  B ) ) )
1211ancoms 268 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( (/)  e.  A  /\  (/)  e.  B )  ->  ( A  .o  (/) )  e.  ( A  .o  B ) ) )
13 nnm0 6475 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
1413adantr 276 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  (/) )  =  (/) )
1514eleq1d 2246 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  (/) )  e.  ( A  .o  B )  <->  (/)  e.  ( A  .o  B ) ) )
1612, 15sylibd 149 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( (/)  e.  A  /\  (/)  e.  B )  ->  (/)  e.  ( A  .o  B ) ) )
1716adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( (/)  e.  A  /\  (/)  e.  B )  ->  (/)  e.  ( A  .o  B ) ) )
1817imp 124 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  ( A  .o  B )  =  (/) )  /\  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  (/)  e.  ( A  .o  B ) )
19 n0i 3428 . . . . . . . 8  |-  ( (/)  e.  ( A  .o  B
)  ->  -.  ( A  .o  B )  =  (/) )
2018, 19syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  ( A  .o  B )  =  (/) )  /\  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  -.  ( A  .o  B
)  =  (/) )
219, 20pm2.21dd 620 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  ( A  .o  B )  =  (/) )  /\  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  ( A  =  (/)  \/  B  =  (/) ) )
2221ex 115 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( (/)  e.  A  /\  (/)  e.  B )  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
238, 22jaod 717 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( ( (/)  e.  A  /\  B  =  (/) )  \/  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
24 0elnn 4618 . . . . . . 7  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
25 0elnn 4618 . . . . . . 7  |-  ( B  e.  om  ->  ( B  =  (/)  \/  (/)  e.  B
) )
2624, 25anim12i 338 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  =  (/)  \/  (/)  e.  A )  /\  ( B  =  (/)  \/  (/)  e.  B ) ) )
27 anddi 821 . . . . . 6  |-  ( ( ( A  =  (/)  \/  (/)  e.  A )  /\  ( B  =  (/)  \/  (/)  e.  B
) )  <->  ( (
( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B ) )  \/  ( ( (/)  e.  A  /\  B  =  (/) )  \/  ( (/) 
e.  A  /\  (/)  e.  B
) ) ) )
2826, 27sylib 122 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B
) )  \/  (
( (/)  e.  A  /\  B  =  (/) )  \/  ( (/)  e.  A  /\  (/)  e.  B ) ) ) )
2928adantr 276 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B
) )  \/  (
( (/)  e.  A  /\  B  =  (/) )  \/  ( (/)  e.  A  /\  (/)  e.  B ) ) ) )
305, 23, 29mpjaod 718 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( A  =  (/)  \/  B  =  (/) ) )
3130ex 115 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
32 oveq1 5881 . . . . . 6  |-  ( A  =  (/)  ->  ( A  .o  B )  =  ( (/)  .o  B
) )
33 nnm0r 6479 . . . . . 6  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  (/) )
3432, 33sylan9eqr 2232 . . . . 5  |-  ( ( B  e.  om  /\  A  =  (/) )  -> 
( A  .o  B
)  =  (/) )
3534ex 115 . . . 4  |-  ( B  e.  om  ->  ( A  =  (/)  ->  ( A  .o  B )  =  (/) ) )
3635adantl 277 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  (/)  ->  ( A  .o  B
)  =  (/) ) )
37 oveq2 5882 . . . . . 6  |-  ( B  =  (/)  ->  ( A  .o  B )  =  ( A  .o  (/) ) )
3837, 13sylan9eqr 2232 . . . . 5  |-  ( ( A  e.  om  /\  B  =  (/) )  -> 
( A  .o  B
)  =  (/) )
3938ex 115 . . . 4  |-  ( A  e.  om  ->  ( B  =  (/)  ->  ( A  .o  B )  =  (/) ) )
4039adantr 276 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  =  (/)  ->  ( A  .o  B
)  =  (/) ) )
4136, 40jaod 717 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  =  (/)  \/  B  =  (/) )  ->  ( A  .o  B )  =  (/) ) )
4231, 41impbid 129 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   (/)c0 3422   omcom 4589  (class class class)co 5874    .o comu 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-oadd 6420  df-omul 6421
This theorem is referenced by:  enq0tr  7432  nqnq0pi  7436
  Copyright terms: Public domain W3C validator