Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnm00 | Unicode version |
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.) |
Ref | Expression |
---|---|
nnm00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . . 7 | |
2 | simpl 108 | . . . . . . 7 | |
3 | 1, 2 | jaoi 706 | . . . . . 6 |
4 | 3 | orcd 723 | . . . . 5 |
5 | 4 | a1i 9 | . . . 4 |
6 | simpr 109 | . . . . . . 7 | |
7 | 6 | olcd 724 | . . . . . 6 |
8 | 7 | a1i 9 | . . . . 5 |
9 | simplr 520 | . . . . . . 7 | |
10 | nnmordi 6452 | . . . . . . . . . . . . 13 | |
11 | 10 | expimpd 361 | . . . . . . . . . . . 12 |
12 | 11 | ancoms 266 | . . . . . . . . . . 11 |
13 | nnm0 6411 | . . . . . . . . . . . . 13 | |
14 | 13 | adantr 274 | . . . . . . . . . . . 12 |
15 | 14 | eleq1d 2223 | . . . . . . . . . . 11 |
16 | 12, 15 | sylibd 148 | . . . . . . . . . 10 |
17 | 16 | adantr 274 | . . . . . . . . 9 |
18 | 17 | imp 123 | . . . . . . . 8 |
19 | n0i 3395 | . . . . . . . 8 | |
20 | 18, 19 | syl 14 | . . . . . . 7 |
21 | 9, 20 | pm2.21dd 610 | . . . . . 6 |
22 | 21 | ex 114 | . . . . 5 |
23 | 8, 22 | jaod 707 | . . . 4 |
24 | 0elnn 4572 | . . . . . . 7 | |
25 | 0elnn 4572 | . . . . . . 7 | |
26 | 24, 25 | anim12i 336 | . . . . . 6 |
27 | anddi 811 | . . . . . 6 | |
28 | 26, 27 | sylib 121 | . . . . 5 |
29 | 28 | adantr 274 | . . . 4 |
30 | 5, 23, 29 | mpjaod 708 | . . 3 |
31 | 30 | ex 114 | . 2 |
32 | oveq1 5821 | . . . . . 6 | |
33 | nnm0r 6415 | . . . . . 6 | |
34 | 32, 33 | sylan9eqr 2209 | . . . . 5 |
35 | 34 | ex 114 | . . . 4 |
36 | 35 | adantl 275 | . . 3 |
37 | oveq2 5822 | . . . . . 6 | |
38 | 37, 13 | sylan9eqr 2209 | . . . . 5 |
39 | 38 | ex 114 | . . . 4 |
40 | 39 | adantr 274 | . . 3 |
41 | 36, 40 | jaod 707 | . 2 |
42 | 31, 41 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1332 wcel 2125 c0 3390 com 4543 (class class class)co 5814 comu 6351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-oadd 6357 df-omul 6358 |
This theorem is referenced by: enq0tr 7333 nqnq0pi 7337 |
Copyright terms: Public domain | W3C validator |