Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnm00 | Unicode version |
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.) |
Ref | Expression |
---|---|
nnm00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . . 7 | |
2 | simpl 108 | . . . . . . 7 | |
3 | 1, 2 | jaoi 711 | . . . . . 6 |
4 | 3 | orcd 728 | . . . . 5 |
5 | 4 | a1i 9 | . . . 4 |
6 | simpr 109 | . . . . . . 7 | |
7 | 6 | olcd 729 | . . . . . 6 |
8 | 7 | a1i 9 | . . . . 5 |
9 | simplr 525 | . . . . . . 7 | |
10 | nnmordi 6495 | . . . . . . . . . . . . 13 | |
11 | 10 | expimpd 361 | . . . . . . . . . . . 12 |
12 | 11 | ancoms 266 | . . . . . . . . . . 11 |
13 | nnm0 6454 | . . . . . . . . . . . . 13 | |
14 | 13 | adantr 274 | . . . . . . . . . . . 12 |
15 | 14 | eleq1d 2239 | . . . . . . . . . . 11 |
16 | 12, 15 | sylibd 148 | . . . . . . . . . 10 |
17 | 16 | adantr 274 | . . . . . . . . 9 |
18 | 17 | imp 123 | . . . . . . . 8 |
19 | n0i 3420 | . . . . . . . 8 | |
20 | 18, 19 | syl 14 | . . . . . . 7 |
21 | 9, 20 | pm2.21dd 615 | . . . . . 6 |
22 | 21 | ex 114 | . . . . 5 |
23 | 8, 22 | jaod 712 | . . . 4 |
24 | 0elnn 4603 | . . . . . . 7 | |
25 | 0elnn 4603 | . . . . . . 7 | |
26 | 24, 25 | anim12i 336 | . . . . . 6 |
27 | anddi 816 | . . . . . 6 | |
28 | 26, 27 | sylib 121 | . . . . 5 |
29 | 28 | adantr 274 | . . . 4 |
30 | 5, 23, 29 | mpjaod 713 | . . 3 |
31 | 30 | ex 114 | . 2 |
32 | oveq1 5860 | . . . . . 6 | |
33 | nnm0r 6458 | . . . . . 6 | |
34 | 32, 33 | sylan9eqr 2225 | . . . . 5 |
35 | 34 | ex 114 | . . . 4 |
36 | 35 | adantl 275 | . . 3 |
37 | oveq2 5861 | . . . . . 6 | |
38 | 37, 13 | sylan9eqr 2225 | . . . . 5 |
39 | 38 | ex 114 | . . . 4 |
40 | 39 | adantr 274 | . . 3 |
41 | 36, 40 | jaod 712 | . 2 |
42 | 31, 41 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 c0 3414 com 4574 (class class class)co 5853 comu 6393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 |
This theorem is referenced by: enq0tr 7396 nqnq0pi 7400 |
Copyright terms: Public domain | W3C validator |