ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm00 Unicode version

Theorem nnm00 6497
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
Assertion
Ref Expression
nnm00  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )

Proof of Theorem nnm00
StepHypRef Expression
1 simpl 108 . . . . . . 7  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  A  =  (/) )
2 simpl 108 . . . . . . 7  |-  ( ( A  =  (/)  /\  (/)  e.  B
)  ->  A  =  (/) )
31, 2jaoi 706 . . . . . 6  |-  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B ) )  ->  A  =  (/) )
43orcd 723 . . . . 5  |-  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B ) )  ->  ( A  =  (/)  \/  B  =  (/) ) )
54a1i 9 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B
) )  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
6 simpr 109 . . . . . . 7  |-  ( (
(/)  e.  A  /\  B  =  (/) )  ->  B  =  (/) )
76olcd 724 . . . . . 6  |-  ( (
(/)  e.  A  /\  B  =  (/) )  -> 
( A  =  (/)  \/  B  =  (/) ) )
87a1i 9 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( (/)  e.  A  /\  B  =  (/) )  -> 
( A  =  (/)  \/  B  =  (/) ) ) )
9 simplr 520 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  ( A  .o  B )  =  (/) )  /\  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  ( A  .o  B )  =  (/) )
10 nnmordi 6484 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  om  /\  A  e.  om )  /\  (/)  e.  A )  ->  ( (/)  e.  B  ->  ( A  .o  (/) )  e.  ( A  .o  B
) ) )
1110expimpd 361 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( (/)  e.  A  /\  (/)  e.  B )  ->  ( A  .o  (/) )  e.  ( A  .o  B ) ) )
1211ancoms 266 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( (/)  e.  A  /\  (/)  e.  B )  ->  ( A  .o  (/) )  e.  ( A  .o  B ) ) )
13 nnm0 6443 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
1413adantr 274 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  (/) )  =  (/) )
1514eleq1d 2235 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  (/) )  e.  ( A  .o  B )  <->  (/)  e.  ( A  .o  B ) ) )
1612, 15sylibd 148 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( (/)  e.  A  /\  (/)  e.  B )  ->  (/)  e.  ( A  .o  B ) ) )
1716adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( (/)  e.  A  /\  (/)  e.  B )  ->  (/)  e.  ( A  .o  B ) ) )
1817imp 123 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  ( A  .o  B )  =  (/) )  /\  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  (/)  e.  ( A  .o  B ) )
19 n0i 3414 . . . . . . . 8  |-  ( (/)  e.  ( A  .o  B
)  ->  -.  ( A  .o  B )  =  (/) )
2018, 19syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  ( A  .o  B )  =  (/) )  /\  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  -.  ( A  .o  B
)  =  (/) )
219, 20pm2.21dd 610 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  ( A  .o  B )  =  (/) )  /\  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  ( A  =  (/)  \/  B  =  (/) ) )
2221ex 114 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( (/)  e.  A  /\  (/)  e.  B )  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
238, 22jaod 707 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( ( (/)  e.  A  /\  B  =  (/) )  \/  ( (/) 
e.  A  /\  (/)  e.  B
) )  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
24 0elnn 4596 . . . . . . 7  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
25 0elnn 4596 . . . . . . 7  |-  ( B  e.  om  ->  ( B  =  (/)  \/  (/)  e.  B
) )
2624, 25anim12i 336 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  =  (/)  \/  (/)  e.  A )  /\  ( B  =  (/)  \/  (/)  e.  B ) ) )
27 anddi 811 . . . . . 6  |-  ( ( ( A  =  (/)  \/  (/)  e.  A )  /\  ( B  =  (/)  \/  (/)  e.  B
) )  <->  ( (
( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B ) )  \/  ( ( (/)  e.  A  /\  B  =  (/) )  \/  ( (/) 
e.  A  /\  (/)  e.  B
) ) ) )
2826, 27sylib 121 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B
) )  \/  (
( (/)  e.  A  /\  B  =  (/) )  \/  ( (/)  e.  A  /\  (/)  e.  B ) ) ) )
2928adantr 274 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  (/)  e.  B
) )  \/  (
( (/)  e.  A  /\  B  =  (/) )  \/  ( (/)  e.  A  /\  (/)  e.  B ) ) ) )
305, 23, 29mpjaod 708 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  B
)  =  (/) )  -> 
( A  =  (/)  \/  B  =  (/) ) )
3130ex 114 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
32 oveq1 5849 . . . . . 6  |-  ( A  =  (/)  ->  ( A  .o  B )  =  ( (/)  .o  B
) )
33 nnm0r 6447 . . . . . 6  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  (/) )
3432, 33sylan9eqr 2221 . . . . 5  |-  ( ( B  e.  om  /\  A  =  (/) )  -> 
( A  .o  B
)  =  (/) )
3534ex 114 . . . 4  |-  ( B  e.  om  ->  ( A  =  (/)  ->  ( A  .o  B )  =  (/) ) )
3635adantl 275 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  (/)  ->  ( A  .o  B
)  =  (/) ) )
37 oveq2 5850 . . . . . 6  |-  ( B  =  (/)  ->  ( A  .o  B )  =  ( A  .o  (/) ) )
3837, 13sylan9eqr 2221 . . . . 5  |-  ( ( A  e.  om  /\  B  =  (/) )  -> 
( A  .o  B
)  =  (/) )
3938ex 114 . . . 4  |-  ( A  e.  om  ->  ( B  =  (/)  ->  ( A  .o  B )  =  (/) ) )
4039adantr 274 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  =  (/)  ->  ( A  .o  B
)  =  (/) ) )
4136, 40jaod 707 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  =  (/)  \/  B  =  (/) )  ->  ( A  .o  B )  =  (/) ) )
4231, 41impbid 128 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   (/)c0 3409   omcom 4567  (class class class)co 5842    .o comu 6382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389
This theorem is referenced by:  enq0tr  7375  nqnq0pi  7379
  Copyright terms: Public domain W3C validator