Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnm00 | Unicode version |
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.) |
Ref | Expression |
---|---|
nnm00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . . 7 | |
2 | simpl 108 | . . . . . . 7 | |
3 | 1, 2 | jaoi 706 | . . . . . 6 |
4 | 3 | orcd 723 | . . . . 5 |
5 | 4 | a1i 9 | . . . 4 |
6 | simpr 109 | . . . . . . 7 | |
7 | 6 | olcd 724 | . . . . . 6 |
8 | 7 | a1i 9 | . . . . 5 |
9 | simplr 520 | . . . . . . 7 | |
10 | nnmordi 6484 | . . . . . . . . . . . . 13 | |
11 | 10 | expimpd 361 | . . . . . . . . . . . 12 |
12 | 11 | ancoms 266 | . . . . . . . . . . 11 |
13 | nnm0 6443 | . . . . . . . . . . . . 13 | |
14 | 13 | adantr 274 | . . . . . . . . . . . 12 |
15 | 14 | eleq1d 2235 | . . . . . . . . . . 11 |
16 | 12, 15 | sylibd 148 | . . . . . . . . . 10 |
17 | 16 | adantr 274 | . . . . . . . . 9 |
18 | 17 | imp 123 | . . . . . . . 8 |
19 | n0i 3414 | . . . . . . . 8 | |
20 | 18, 19 | syl 14 | . . . . . . 7 |
21 | 9, 20 | pm2.21dd 610 | . . . . . 6 |
22 | 21 | ex 114 | . . . . 5 |
23 | 8, 22 | jaod 707 | . . . 4 |
24 | 0elnn 4596 | . . . . . . 7 | |
25 | 0elnn 4596 | . . . . . . 7 | |
26 | 24, 25 | anim12i 336 | . . . . . 6 |
27 | anddi 811 | . . . . . 6 | |
28 | 26, 27 | sylib 121 | . . . . 5 |
29 | 28 | adantr 274 | . . . 4 |
30 | 5, 23, 29 | mpjaod 708 | . . 3 |
31 | 30 | ex 114 | . 2 |
32 | oveq1 5849 | . . . . . 6 | |
33 | nnm0r 6447 | . . . . . 6 | |
34 | 32, 33 | sylan9eqr 2221 | . . . . 5 |
35 | 34 | ex 114 | . . . 4 |
36 | 35 | adantl 275 | . . 3 |
37 | oveq2 5850 | . . . . . 6 | |
38 | 37, 13 | sylan9eqr 2221 | . . . . 5 |
39 | 38 | ex 114 | . . . 4 |
40 | 39 | adantr 274 | . . 3 |
41 | 36, 40 | jaod 707 | . 2 |
42 | 31, 41 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 c0 3409 com 4567 (class class class)co 5842 comu 6382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 |
This theorem is referenced by: enq0tr 7375 nqnq0pi 7379 |
Copyright terms: Public domain | W3C validator |