ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0r Unicode version

Theorem n0r 3505
Description: An inhabited class is nonempty. See n0rf 3504 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0r  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
Distinct variable group:    x, A

Proof of Theorem n0r
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ x A
21n0rf 3504 1  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538    e. wcel 2200    =/= wne 2400   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  neq0r  3506  opnzi  4320  elqsn0  6749  fin0  7043  infn0  7063  fiubm  11045  lswex  11118  fsumcllem  11905  fprodcllem  12112  setsfun0  13063  gsumwsubmcl  13524  gsumwmhm  13526
  Copyright terms: Public domain W3C validator