Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0r Unicode version

Theorem n0r 3344
 Description: An inhabited class is nonempty. See n0rf 3343 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0r
Distinct variable group:   ,

Proof of Theorem n0r
StepHypRef Expression
1 nfcv 2256 . 2
21n0rf 3343 1
 Colors of variables: wff set class Syntax hints:   wi 4  wex 1451   wcel 1463   wne 2283  c0 3331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-v 2660  df-dif 3041  df-nul 3332 This theorem is referenced by:  neq0r  3345  opnzi  4125  elqsn0  6464  fin0  6745  infn0  6765  fsumcllem  11108  setsfun0  11890
 Copyright terms: Public domain W3C validator