ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0r Unicode version

Theorem n0r 3437
Description: An inhabited class is nonempty. See n0rf 3436 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0r  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
Distinct variable group:    x, A

Proof of Theorem n0r
StepHypRef Expression
1 nfcv 2319 . 2  |-  F/_ x A
21n0rf 3436 1  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1492    e. wcel 2148    =/= wne 2347   (/)c0 3423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2740  df-dif 3132  df-nul 3424
This theorem is referenced by:  neq0r  3438  opnzi  4236  elqsn0  6604  fin0  6885  infn0  6905  fiubm  10808  fsumcllem  11407  fprodcllem  11614  setsfun0  12498
  Copyright terms: Public domain W3C validator