Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > n0r | Unicode version |
Description: An inhabited class is nonempty. See n0rf 3421 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.) |
Ref | Expression |
---|---|
n0r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 | |
2 | 1 | n0rf 3421 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1480 wcel 2136 wne 2336 c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: neq0r 3423 opnzi 4213 elqsn0 6570 fin0 6851 infn0 6871 fiubm 10741 fsumcllem 11340 fprodcllem 11547 setsfun0 12430 |
Copyright terms: Public domain | W3C validator |