ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbrne2 Unicode version

Theorem nbrne2 4009
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
nbrne2  |-  ( ( A R C  /\  -.  B R C )  ->  A  =/=  B
)

Proof of Theorem nbrne2
StepHypRef Expression
1 breq1 3992 . . . 4  |-  ( A  =  B  ->  ( A R C  <->  B R C ) )
21biimpcd 158 . . 3  |-  ( A R C  ->  ( A  =  B  ->  B R C ) )
32necon3bd 2383 . 2  |-  ( A R C  ->  ( -.  B R C  ->  A  =/=  B ) )
43imp 123 1  |-  ( ( A R C  /\  -.  B R C )  ->  A  =/=  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1348    =/= wne 2340   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator