ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri Unicode version

Theorem eqbrtri 4008
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1  |-  A  =  B
eqbrtr.2  |-  B R C
Assertion
Ref Expression
eqbrtri  |-  A R C

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2  |-  B R C
2 eqbrtr.1 . . 3  |-  A  =  B
32breq1i 3994 . 2  |-  ( A R C  <->  B R C )
41, 3mpbir 145 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1348   class class class wbr 3987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988
This theorem is referenced by:  eqbrtrri  4010  3brtr4i  4017  exmidonfinlem  7157  neg1lt0  8973  halflt1  9082  3halfnz  9296  declei  9365  numlti  9366  faclbnd3  10664  geo2lim  11466  0.999...  11471  geoihalfsum  11472  fprodap0  11571  fprodap0f  11586  tan0  11681  cos2bnd  11710  sin4lt0  11716  eirraplem  11726  1nprm  12055  znnen  12340  tan4thpi  13477  zabsle1  13615  ex-fl  13681  trilpolemisumle  13992
  Copyright terms: Public domain W3C validator