Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqbrtr.1 | |
eqbrtr.2 |
Ref | Expression |
---|---|
eqbrtri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 | . 2 | |
2 | eqbrtr.1 | . . 3 | |
3 | 2 | breq1i 3996 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: eqbrtrri 4012 3brtr4i 4019 exmidonfinlem 7170 neg1lt0 8986 halflt1 9095 3halfnz 9309 declei 9378 numlti 9379 faclbnd3 10677 geo2lim 11479 0.999... 11484 geoihalfsum 11485 fprodap0 11584 fprodap0f 11599 tan0 11694 cos2bnd 11723 sin4lt0 11729 eirraplem 11739 1nprm 12068 znnen 12353 tan4thpi 13556 zabsle1 13694 ex-fl 13760 trilpolemisumle 14070 |
Copyright terms: Public domain | W3C validator |