ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri Unicode version

Theorem eqbrtri 4080
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1  |-  A  =  B
eqbrtr.2  |-  B R C
Assertion
Ref Expression
eqbrtri  |-  A R C

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2  |-  B R C
2 eqbrtr.1 . . 3  |-  A  =  B
32breq1i 4066 . 2  |-  ( A R C  <->  B R C )
41, 3mpbir 146 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  eqbrtrri  4082  3brtr4i  4089  exmidpw2en  7035  exmidonfinlem  7332  neg1lt0  9179  halflt1  9289  3halfnz  9505  declei  9574  numlti  9575  faclbnd3  10925  geo2lim  11942  0.999...  11947  geoihalfsum  11948  fprodap0  12047  fprodap0f  12062  tan0  12157  cos2bnd  12186  sin4lt0  12193  eirraplem  12203  1nprm  12551  znnen  12884  cnfldstr  14435  tan4thpi  15428  zabsle1  15591  ex-fl  15861  trilpolemisumle  16179
  Copyright terms: Public domain W3C validator