ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri Unicode version

Theorem eqbrtri 4065
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1  |-  A  =  B
eqbrtr.2  |-  B R C
Assertion
Ref Expression
eqbrtri  |-  A R C

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2  |-  B R C
2 eqbrtr.1 . . 3  |-  A  =  B
32breq1i 4051 . 2  |-  ( A R C  <->  B R C )
41, 3mpbir 146 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1373   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  eqbrtrri  4067  3brtr4i  4074  exmidpw2en  7009  exmidonfinlem  7301  neg1lt0  9144  halflt1  9254  3halfnz  9470  declei  9539  numlti  9540  faclbnd3  10888  geo2lim  11827  0.999...  11832  geoihalfsum  11833  fprodap0  11932  fprodap0f  11947  tan0  12042  cos2bnd  12071  sin4lt0  12078  eirraplem  12088  1nprm  12436  znnen  12769  cnfldstr  14320  tan4thpi  15313  zabsle1  15476  ex-fl  15661  trilpolemisumle  15977
  Copyright terms: Public domain W3C validator