| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eqbrtr.1 | 
 | 
| eqbrtr.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqbrtri | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqbrtr.2 | 
. 2
 | |
| 2 | eqbrtr.1 | 
. . 3
 | |
| 3 | 2 | breq1i 4040 | 
. 2
 | 
| 4 | 1, 3 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 | 
| This theorem is referenced by: eqbrtrri 4056 3brtr4i 4063 exmidpw2en 6973 exmidonfinlem 7260 neg1lt0 9098 halflt1 9208 3halfnz 9423 declei 9492 numlti 9493 faclbnd3 10835 geo2lim 11681 0.999... 11686 geoihalfsum 11687 fprodap0 11786 fprodap0f 11801 tan0 11896 cos2bnd 11925 sin4lt0 11932 eirraplem 11942 1nprm 12282 znnen 12615 cnfldstr 14114 tan4thpi 15077 zabsle1 15240 ex-fl 15371 trilpolemisumle 15682 | 
| Copyright terms: Public domain | W3C validator |