| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 |
|
| eqbrtr.2 |
|
| Ref | Expression |
|---|---|
| eqbrtri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 |
. 2
| |
| 2 | eqbrtr.1 |
. . 3
| |
| 3 | 2 | breq1i 4041 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: eqbrtrri 4057 3brtr4i 4064 exmidpw2en 6982 exmidonfinlem 7272 neg1lt0 9115 halflt1 9225 3halfnz 9440 declei 9509 numlti 9510 faclbnd3 10852 geo2lim 11698 0.999... 11703 geoihalfsum 11704 fprodap0 11803 fprodap0f 11818 tan0 11913 cos2bnd 11942 sin4lt0 11949 eirraplem 11959 1nprm 12307 znnen 12640 cnfldstr 14190 tan4thpi 15161 zabsle1 15324 ex-fl 15455 trilpolemisumle 15769 |
| Copyright terms: Public domain | W3C validator |