ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri Unicode version

Theorem eqbrtri 4104
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1  |-  A  =  B
eqbrtr.2  |-  B R C
Assertion
Ref Expression
eqbrtri  |-  A R C

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2  |-  B R C
2 eqbrtr.1 . . 3  |-  A  =  B
32breq1i 4090 . 2  |-  ( A R C  <->  B R C )
41, 3mpbir 146 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  eqbrtrri  4106  3brtr4i  4113  exmidpw2en  7074  exmidonfinlem  7371  neg1lt0  9218  halflt1  9328  3halfnz  9544  declei  9613  numlti  9614  faclbnd3  10965  geo2lim  12027  0.999...  12032  geoihalfsum  12033  fprodap0  12132  fprodap0f  12147  tan0  12242  cos2bnd  12271  sin4lt0  12278  eirraplem  12288  1nprm  12636  znnen  12969  cnfldstr  14522  tan4thpi  15515  zabsle1  15678  ex-fl  16089  trilpolemisumle  16406
  Copyright terms: Public domain W3C validator