| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 |
|
| eqbrtr.2 |
|
| Ref | Expression |
|---|---|
| eqbrtri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 |
. 2
| |
| 2 | eqbrtr.1 |
. . 3
| |
| 3 | 2 | breq1i 4051 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: eqbrtrri 4067 3brtr4i 4074 exmidpw2en 7009 exmidonfinlem 7301 neg1lt0 9144 halflt1 9254 3halfnz 9470 declei 9539 numlti 9540 faclbnd3 10888 geo2lim 11827 0.999... 11832 geoihalfsum 11833 fprodap0 11932 fprodap0f 11947 tan0 12042 cos2bnd 12071 sin4lt0 12078 eirraplem 12088 1nprm 12436 znnen 12769 cnfldstr 14320 tan4thpi 15313 zabsle1 15476 ex-fl 15661 trilpolemisumle 15977 |
| Copyright terms: Public domain | W3C validator |