| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 |
|
| eqbrtr.2 |
|
| Ref | Expression |
|---|---|
| eqbrtri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 |
. 2
| |
| 2 | eqbrtr.1 |
. . 3
| |
| 3 | 2 | breq1i 4090 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: eqbrtrri 4106 3brtr4i 4113 exmidpw2en 7074 exmidonfinlem 7371 neg1lt0 9218 halflt1 9328 3halfnz 9544 declei 9613 numlti 9614 faclbnd3 10965 geo2lim 12027 0.999... 12032 geoihalfsum 12033 fprodap0 12132 fprodap0f 12147 tan0 12242 cos2bnd 12271 sin4lt0 12278 eirraplem 12288 1nprm 12636 znnen 12969 cnfldstr 14522 tan4thpi 15515 zabsle1 15678 ex-fl 16089 trilpolemisumle 16406 |
| Copyright terms: Public domain | W3C validator |