| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 |
|
| eqbrtr.2 |
|
| Ref | Expression |
|---|---|
| eqbrtri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 |
. 2
| |
| 2 | eqbrtr.1 |
. . 3
| |
| 3 | 2 | breq1i 4066 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: eqbrtrri 4082 3brtr4i 4089 exmidpw2en 7035 exmidonfinlem 7332 neg1lt0 9179 halflt1 9289 3halfnz 9505 declei 9574 numlti 9575 faclbnd3 10925 geo2lim 11942 0.999... 11947 geoihalfsum 11948 fprodap0 12047 fprodap0f 12062 tan0 12157 cos2bnd 12186 sin4lt0 12193 eirraplem 12203 1nprm 12551 znnen 12884 cnfldstr 14435 tan4thpi 15428 zabsle1 15591 ex-fl 15861 trilpolemisumle 16179 |
| Copyright terms: Public domain | W3C validator |