Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqbrtr.1 | |
eqbrtr.2 |
Ref | Expression |
---|---|
eqbrtri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 | . 2 | |
2 | eqbrtr.1 | . . 3 | |
3 | 2 | breq1i 3994 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 class class class wbr 3987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 |
This theorem is referenced by: eqbrtrri 4010 3brtr4i 4017 exmidonfinlem 7157 neg1lt0 8973 halflt1 9082 3halfnz 9296 declei 9365 numlti 9366 faclbnd3 10664 geo2lim 11466 0.999... 11471 geoihalfsum 11472 fprodap0 11571 fprodap0f 11586 tan0 11681 cos2bnd 11710 sin4lt0 11716 eirraplem 11726 1nprm 12055 znnen 12340 tan4thpi 13477 zabsle1 13615 ex-fl 13681 trilpolemisumle 13992 |
Copyright terms: Public domain | W3C validator |