![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqbrtr.1 |
![]() ![]() ![]() ![]() |
eqbrtr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqbrtri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqbrtr.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | breq1i 4022 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 |
This theorem is referenced by: eqbrtrri 4038 3brtr4i 4045 exmidonfinlem 7206 neg1lt0 9041 halflt1 9150 3halfnz 9364 declei 9433 numlti 9434 faclbnd3 10737 geo2lim 11538 0.999... 11543 geoihalfsum 11544 fprodap0 11643 fprodap0f 11658 tan0 11753 cos2bnd 11782 sin4lt0 11788 eirraplem 11798 1nprm 12128 znnen 12413 tan4thpi 14558 zabsle1 14696 ex-fl 14773 trilpolemisumle 15083 |
Copyright terms: Public domain | W3C validator |