![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqbrtr.1 |
![]() ![]() ![]() ![]() |
eqbrtr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqbrtri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqbrtr.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | breq1i 4036 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: eqbrtrri 4052 3brtr4i 4059 exmidpw2en 6968 exmidonfinlem 7253 neg1lt0 9090 halflt1 9199 3halfnz 9414 declei 9483 numlti 9484 faclbnd3 10814 geo2lim 11659 0.999... 11664 geoihalfsum 11665 fprodap0 11764 fprodap0f 11779 tan0 11874 cos2bnd 11903 sin4lt0 11910 eirraplem 11920 1nprm 12252 znnen 12555 tan4thpi 14976 zabsle1 15115 ex-fl 15217 trilpolemisumle 15528 |
Copyright terms: Public domain | W3C validator |