![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtri | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqbrtr.1 |
![]() ![]() ![]() ![]() |
eqbrtr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqbrtri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqbrtr.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | breq1i 4037 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: eqbrtrri 4053 3brtr4i 4060 exmidpw2en 6970 exmidonfinlem 7255 neg1lt0 9092 halflt1 9202 3halfnz 9417 declei 9486 numlti 9487 faclbnd3 10817 geo2lim 11662 0.999... 11667 geoihalfsum 11668 fprodap0 11767 fprodap0f 11782 tan0 11877 cos2bnd 11906 sin4lt0 11913 eirraplem 11923 1nprm 12255 znnen 12558 cnfldstr 14057 tan4thpi 15017 zabsle1 15156 ex-fl 15287 trilpolemisumle 15598 |
Copyright terms: Public domain | W3C validator |