ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri Unicode version

Theorem eqbrtri 4036
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1  |-  A  =  B
eqbrtr.2  |-  B R C
Assertion
Ref Expression
eqbrtri  |-  A R C

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2  |-  B R C
2 eqbrtr.1 . . 3  |-  A  =  B
32breq1i 4022 . 2  |-  ( A R C  <->  B R C )
41, 3mpbir 146 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1363   class class class wbr 4015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016
This theorem is referenced by:  eqbrtrri  4038  3brtr4i  4045  exmidonfinlem  7206  neg1lt0  9041  halflt1  9150  3halfnz  9364  declei  9433  numlti  9434  faclbnd3  10737  geo2lim  11538  0.999...  11543  geoihalfsum  11544  fprodap0  11643  fprodap0f  11658  tan0  11753  cos2bnd  11782  sin4lt0  11788  eirraplem  11798  1nprm  12128  znnen  12413  tan4thpi  14558  zabsle1  14696  ex-fl  14773  trilpolemisumle  15083
  Copyright terms: Public domain W3C validator