ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbrne2 GIF version

Theorem nbrne2 3829
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
nbrne2 ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴𝐵)

Proof of Theorem nbrne2
StepHypRef Expression
1 breq1 3814 . . . 4 (𝐴 = 𝐵 → (𝐴𝑅𝐶𝐵𝑅𝐶))
21biimpcd 157 . . 3 (𝐴𝑅𝐶 → (𝐴 = 𝐵𝐵𝑅𝐶))
32necon3bd 2292 . 2 (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶𝐴𝐵))
43imp 122 1 ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1285  wne 2249   class class class wbr 3811
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-v 2614  df-un 2988  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator