ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2ad Unicode version

Theorem necon2ad 2404
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon2ad.1  |-  ( ph  ->  ( A  =  B  ->  -.  ps )
)
Assertion
Ref Expression
necon2ad  |-  ( ph  ->  ( ps  ->  A  =/=  B ) )

Proof of Theorem necon2ad
StepHypRef Expression
1 necon2ad.1 . . 3  |-  ( ph  ->  ( A  =  B  ->  -.  ps )
)
21con2d 624 . 2  |-  ( ph  ->  ( ps  ->  -.  A  =  B )
)
3 df-ne 2348 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3imbitrrdi 162 1  |-  ( ph  ->  ( ps  ->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353    =/= wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2348
This theorem is referenced by:  necon2d  2406  prneimg  3776  tz7.2  4356  nordeq  4545  pr2ne  7193  ltne  8044  apne  8582  xrltne  9815  npnflt  9817  nmnfgt  9820  ge0nemnf  9826  rpexp  12155  sqrt2irr  12164  pcgcd1  12329  nzrunit  13334  lgsmod  14512
  Copyright terms: Public domain W3C validator