| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon2ad | Unicode version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
| Ref | Expression |
|---|---|
| necon2ad.1 |
|
| Ref | Expression |
|---|---|
| necon2ad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ad.1 |
. . 3
| |
| 2 | 1 | con2d 625 |
. 2
|
| 3 | df-ne 2376 |
. 2
| |
| 4 | 2, 3 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2376 |
| This theorem is referenced by: necon2d 2434 prneimg 3814 tz7.2 4399 nordeq 4590 pr2ne 7282 ltne 8139 apne 8678 xrltne 9917 npnflt 9919 nmnfgt 9922 ge0nemnf 9928 rpexp 12394 sqrt2irr 12403 pcgcd1 12570 nzrunit 13868 lgsmod 15421 |
| Copyright terms: Public domain | W3C validator |