ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2ad Unicode version

Theorem necon2ad 2434
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon2ad.1  |-  ( ph  ->  ( A  =  B  ->  -.  ps )
)
Assertion
Ref Expression
necon2ad  |-  ( ph  ->  ( ps  ->  A  =/=  B ) )

Proof of Theorem necon2ad
StepHypRef Expression
1 necon2ad.1 . . 3  |-  ( ph  ->  ( A  =  B  ->  -.  ps )
)
21con2d 625 . 2  |-  ( ph  ->  ( ps  ->  -.  A  =  B )
)
3 df-ne 2378 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3imbitrrdi 162 1  |-  ( ph  ->  ( ps  ->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373    =/= wne 2377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2378
This theorem is referenced by:  necon2d  2436  prneimg  3821  tz7.2  4409  nordeq  4600  pr2ne  7315  ltne  8177  apne  8716  xrltne  9955  npnflt  9957  nmnfgt  9960  ge0nemnf  9966  rpexp  12550  sqrt2irr  12559  pcgcd1  12726  nzrunit  14025  lgsmod  15578
  Copyright terms: Public domain W3C validator