| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon2ad | Unicode version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
| Ref | Expression |
|---|---|
| necon2ad.1 |
|
| Ref | Expression |
|---|---|
| necon2ad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ad.1 |
. . 3
| |
| 2 | 1 | con2d 625 |
. 2
|
| 3 | df-ne 2378 |
. 2
| |
| 4 | 2, 3 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2378 |
| This theorem is referenced by: necon2d 2436 prneimg 3821 tz7.2 4409 nordeq 4600 pr2ne 7315 ltne 8177 apne 8716 xrltne 9955 npnflt 9957 nmnfgt 9960 ge0nemnf 9966 rpexp 12550 sqrt2irr 12559 pcgcd1 12726 nzrunit 14025 lgsmod 15578 |
| Copyright terms: Public domain | W3C validator |