| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon2ad | Unicode version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
| Ref | Expression |
|---|---|
| necon2ad.1 |
|
| Ref | Expression |
|---|---|
| necon2ad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ad.1 |
. . 3
| |
| 2 | 1 | con2d 625 |
. 2
|
| 3 | df-ne 2368 |
. 2
| |
| 4 | 2, 3 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: necon2d 2426 prneimg 3805 tz7.2 4390 nordeq 4581 pr2ne 7271 ltne 8128 apne 8667 xrltne 9905 npnflt 9907 nmnfgt 9910 ge0nemnf 9916 rpexp 12346 sqrt2irr 12355 pcgcd1 12522 nzrunit 13820 lgsmod 15351 |
| Copyright terms: Public domain | W3C validator |