| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > necon2ad | Unicode version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) | 
| Ref | Expression | 
|---|---|
| necon2ad.1 | 
 | 
| Ref | Expression | 
|---|---|
| necon2ad | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | necon2ad.1 | 
. . 3
 | |
| 2 | 1 | con2d 625 | 
. 2
 | 
| 3 | df-ne 2368 | 
. 2
 | |
| 4 | 2, 3 | imbitrrdi 162 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: necon2d 2426 prneimg 3804 tz7.2 4389 nordeq 4580 pr2ne 7259 ltne 8111 apne 8650 xrltne 9888 npnflt 9890 nmnfgt 9893 ge0nemnf 9899 rpexp 12321 sqrt2irr 12330 pcgcd1 12497 nzrunit 13744 lgsmod 15267 | 
| Copyright terms: Public domain | W3C validator |