| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon2ad | Unicode version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
| Ref | Expression |
|---|---|
| necon2ad.1 |
|
| Ref | Expression |
|---|---|
| necon2ad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ad.1 |
. . 3
| |
| 2 | 1 | con2d 627 |
. 2
|
| 3 | df-ne 2401 |
. 2
| |
| 4 | 2, 3 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: necon2d 2459 prneimg 3851 tz7.2 4444 nordeq 4635 pr2ne 7361 ltne 8227 apne 8766 xrltne 10005 npnflt 10007 nmnfgt 10010 ge0nemnf 10016 rpexp 12670 sqrt2irr 12679 pcgcd1 12846 nzrunit 14146 lgsmod 15699 |
| Copyright terms: Public domain | W3C validator |