| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pr2ne | Unicode version | ||
| Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.) |
| Ref | Expression |
|---|---|
| pr2ne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 3744 |
. . . . 5
| |
| 2 | 1 | eqcoms 2232 |
. . . 4
|
| 3 | enpr1g 6950 |
. . . . . 6
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | prexg 4295 |
. . . . . . 7
| |
| 6 | eqeng 6917 |
. . . . . . 7
| |
| 7 | 5, 6 | syl 14 |
. . . . . 6
|
| 8 | entr 6936 |
. . . . . . . . 9
| |
| 9 | 1nen2 7022 |
. . . . . . . . . . 11
| |
| 10 | ensym 6933 |
. . . . . . . . . . . 12
| |
| 11 | entr 6936 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | ex 115 |
. . . . . . . . . . . 12
|
| 13 | 10, 12 | syl 14 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | mtoi 668 |
. . . . . . . . . 10
|
| 15 | 14 | a1d 22 |
. . . . . . . . 9
|
| 16 | 8, 15 | syl 14 |
. . . . . . . 8
|
| 17 | 16 | ex 115 |
. . . . . . 7
|
| 18 | 17 | com3r 79 |
. . . . . 6
|
| 19 | 7, 18 | syld 45 |
. . . . 5
|
| 20 | 4, 19 | mpid 42 |
. . . 4
|
| 21 | 2, 20 | syl5 32 |
. . 3
|
| 22 | 21 | necon2ad 2457 |
. 2
|
| 23 | pr2nelem 7364 |
. . 3
| |
| 24 | 23 | 3expia 1229 |
. 2
|
| 25 | 22, 24 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6562 df-2o 6563 df-er 6680 df-en 6888 |
| This theorem is referenced by: en2prde 7366 pr1or2 7367 exmidonfinlem 7371 pw1dom2 7412 isprm2lem 12638 umgrbien 15910 umgrnloopv 15914 umgredgne 15948 |
| Copyright terms: Public domain | W3C validator |