Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pr2ne | Unicode version |
Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.) |
Ref | Expression |
---|---|
pr2ne |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 3654 | . . . . 5 | |
2 | 1 | eqcoms 2168 | . . . 4 |
3 | enpr1g 6764 | . . . . . 6 | |
4 | 3 | adantr 274 | . . . . 5 |
5 | prexg 4189 | . . . . . . 7 | |
6 | eqeng 6732 | . . . . . . 7 | |
7 | 5, 6 | syl 14 | . . . . . 6 |
8 | entr 6750 | . . . . . . . . 9 | |
9 | 1nen2 6827 | . . . . . . . . . . 11 | |
10 | ensym 6747 | . . . . . . . . . . . 12 | |
11 | entr 6750 | . . . . . . . . . . . . 13 | |
12 | 11 | ex 114 | . . . . . . . . . . . 12 |
13 | 10, 12 | syl 14 | . . . . . . . . . . 11 |
14 | 9, 13 | mtoi 654 | . . . . . . . . . 10 |
15 | 14 | a1d 22 | . . . . . . . . 9 |
16 | 8, 15 | syl 14 | . . . . . . . 8 |
17 | 16 | ex 114 | . . . . . . 7 |
18 | 17 | com3r 79 | . . . . . 6 |
19 | 7, 18 | syld 45 | . . . . 5 |
20 | 4, 19 | mpid 42 | . . . 4 |
21 | 2, 20 | syl5 32 | . . 3 |
22 | 21 | necon2ad 2393 | . 2 |
23 | pr2nelem 7147 | . . 3 | |
24 | 23 | 3expia 1195 | . 2 |
25 | 22, 24 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wne 2336 cvv 2726 cpr 3577 class class class wbr 3982 c1o 6377 c2o 6378 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 |
This theorem is referenced by: exmidonfinlem 7149 pw1dom2 7183 isprm2lem 12048 |
Copyright terms: Public domain | W3C validator |