ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2ne Unicode version

Theorem pr2ne 7169
Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 3661 . . . . 5  |-  ( B  =  A  ->  { A ,  B }  =  { A ,  A }
)
21eqcoms 2173 . . . 4  |-  ( A  =  B  ->  { A ,  B }  =  { A ,  A }
)
3 enpr1g 6776 . . . . . 6  |-  ( A  e.  C  ->  { A ,  A }  ~~  1o )
43adantr 274 . . . . 5  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A ,  A }  ~~  1o )
5 prexg 4196 . . . . . . 7  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A ,  B }  e.  _V )
6 eqeng 6744 . . . . . . 7  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  =  { A ,  A }  ->  { A ,  B }  ~~  { A ,  A } ) )
75, 6syl 14 . . . . . 6  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  =  { A ,  A }  ->  { A ,  B }  ~~  { A ,  A } ) )
8 entr 6762 . . . . . . . . 9  |-  ( ( { A ,  B }  ~~  { A ,  A }  /\  { A ,  A }  ~~  1o )  ->  { A ,  B }  ~~  1o )
9 1nen2 6839 . . . . . . . . . . 11  |-  -.  1o  ~~  2o
10 ensym 6759 . . . . . . . . . . . 12  |-  ( { A ,  B }  ~~  1o  ->  1o  ~~  { A ,  B }
)
11 entr 6762 . . . . . . . . . . . . 13  |-  ( ( 1o  ~~  { A ,  B }  /\  { A ,  B }  ~~  2o )  ->  1o  ~~  2o )
1211ex 114 . . . . . . . . . . . 12  |-  ( 1o 
~~  { A ,  B }  ->  ( { A ,  B }  ~~  2o  ->  1o  ~~  2o ) )
1310, 12syl 14 . . . . . . . . . . 11  |-  ( { A ,  B }  ~~  1o  ->  ( { A ,  B }  ~~  2o  ->  1o  ~~  2o ) )
149, 13mtoi 659 . . . . . . . . . 10  |-  ( { A ,  B }  ~~  1o  ->  -.  { A ,  B }  ~~  2o )
1514a1d 22 . . . . . . . . 9  |-  ( { A ,  B }  ~~  1o  ->  ( ( A  e.  C  /\  B  e.  D )  ->  -.  { A ,  B }  ~~  2o ) )
168, 15syl 14 . . . . . . . 8  |-  ( ( { A ,  B }  ~~  { A ,  A }  /\  { A ,  A }  ~~  1o )  ->  ( ( A  e.  C  /\  B  e.  D )  ->  -.  { A ,  B }  ~~  2o ) )
1716ex 114 . . . . . . 7  |-  ( { A ,  B }  ~~  { A ,  A }  ->  ( { A ,  A }  ~~  1o  ->  ( ( A  e.  C  /\  B  e.  D )  ->  -.  { A ,  B }  ~~  2o ) ) )
1817com3r 79 . . . . . 6  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  { A ,  A }  ->  ( { A ,  A }  ~~  1o  ->  -.  { A ,  B }  ~~  2o ) ) )
197, 18syld 45 . . . . 5  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  =  { A ,  A }  ->  ( { A ,  A }  ~~  1o  ->  -. 
{ A ,  B }  ~~  2o ) ) )
204, 19mpid 42 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  =  { A ,  A }  ->  -.  { A ,  B }  ~~  2o ) )
212, 20syl5 32 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  =  B  ->  -.  { A ,  B }  ~~  2o ) )
2221necon2ad 2397 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  ->  A  =/=  B ) )
23 pr2nelem 7168 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B )  ->  { A ,  B }  ~~  2o )
24233expia 1200 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  =/=  B  ->  { A ,  B }  ~~  2o ) )
2522, 24impbid 128 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   _Vcvv 2730   {cpr 3584   class class class wbr 3989   1oc1o 6388   2oc2o 6389    ~~ cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719
This theorem is referenced by:  exmidonfinlem  7170  pw1dom2  7204  isprm2lem  12070
  Copyright terms: Public domain W3C validator