ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd1 Unicode version

Theorem pcgcd1 12766
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 5975 . . . 4  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
21oveq2d 5983 . . 3  |-  ( B  =  0  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  ( A  gcd  0 ) ) )
3 simp2 1001 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
4 gcdid0 12416 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
65oveq2d 5983 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  ( abs `  A ) ) )
7 zq 9782 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
8 pcabs 12764 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
97, 8sylan2 286 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
1093adant3 1020 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
116, 10eqtrd 2240 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A
) )
1211adantr 276 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A ) )
132, 12sylan9eqr 2262 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =  0 )  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A ) )
14 simpl1 1003 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  Prime )
153adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
16 simpl3 1005 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
17 simprr 531 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  =/=  0 )
18 simpr 110 . . . . . . . . 9  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
1918necon3ai 2427 . . . . . . . 8  |-  ( B  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
2017, 19syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
21 gcdn0cl 12398 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
2215, 16, 20, 21syl21anc 1249 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  NN )
2322nnzd 9529 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  ZZ )
24 gcddvds 12399 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2515, 16, 24syl2anc 411 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2625simpld 112 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  ||  A )
27 pcdvdstr 12765 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  ( A  gcd  B )  ||  A ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2814, 23, 15, 26, 27syl13anc 1252 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2915, 7syl 14 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  QQ )
30 pcxcl 12749 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
3114, 29, 30syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR* )
32 pczcl 12736 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3314, 16, 17, 32syl12anc 1248 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3433nn0red 9384 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  RR )
35 pcge0 12751 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( P  pCnt  A
) )
3614, 15, 35syl2anc 411 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
0  <_  ( P  pCnt  A ) )
37 ge0gtmnf 9980 . . . . . . . . . 10  |-  ( ( ( P  pCnt  A
)  e.  RR*  /\  0  <_  ( P  pCnt  A
) )  -> -oo  <  ( P  pCnt  A )
)
3831, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> -oo  <  ( P  pCnt  A ) )
39 simprl 529 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
40 xrre 9977 . . . . . . . . 9  |-  ( ( ( ( P  pCnt  A )  e.  RR*  /\  ( P  pCnt  B )  e.  RR )  /\  ( -oo  <  ( P  pCnt  A )  /\  ( P 
pCnt  A )  <_  ( P  pCnt  B ) ) )  ->  ( P  pCnt  A )  e.  RR )
4131, 34, 38, 39, 40syl22anc 1251 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR )
42 pnfnre 8149 . . . . . . . . . . . 12  |- +oo  e/  RR
4342neli 2475 . . . . . . . . . . 11  |-  -. +oo  e.  RR
44 pc0 12742 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
4514, 44syl 14 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  0
)  = +oo )
4645eleq1d 2276 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  0 )  e.  RR  <-> +oo  e.  RR ) )
4743, 46mtbiri 677 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( P  pCnt  0
)  e.  RR )
48 oveq2 5975 . . . . . . . . . . . 12  |-  ( A  =  0  ->  ( P  pCnt  A )  =  ( P  pCnt  0
) )
4948eleq1d 2276 . . . . . . . . . . 11  |-  ( A  =  0  ->  (
( P  pCnt  A
)  e.  RR  <->  ( P  pCnt  0 )  e.  RR ) )
5049notbid 669 . . . . . . . . . 10  |-  ( A  =  0  ->  ( -.  ( P  pCnt  A
)  e.  RR  <->  -.  ( P  pCnt  0 )  e.  RR ) )
5147, 50syl5ibrcom 157 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  =  0  ->  -.  ( P  pCnt  A )  e.  RR ) )
5251necon2ad 2435 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  e.  RR  ->  A  =/=  0 ) )
5341, 52mpd 13 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  =/=  0 )
54 pczdvds 12752 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
5514, 15, 53, 54syl12anc 1248 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
56 pczcl 12736 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
5714, 15, 53, 56syl12anc 1248 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
58 pcdvdsb 12758 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  B  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
5914, 16, 57, 58syl3anc 1250 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
6039, 59mpbid 147 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  B )
61 prmnn 12547 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6214, 61syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  NN )
6362, 57nnexpcld 10877 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  NN )
6463nnzd 9529 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  ZZ )
65 dvdsgcd 12448 . . . . . . 7  |-  ( ( ( P ^ ( P  pCnt  A ) )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( P ^
( P  pCnt  A
) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6664, 15, 16, 65syl3anc 1250 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( ( P ^ ( P  pCnt  A ) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6755, 60, 66mp2and 433 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) )
68 pcdvdsb 12758 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  gcd  B )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
6914, 23, 57, 68syl3anc 1250 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B
) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
7067, 69mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  gcd  B
) ) )
7114, 22pccld 12738 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  NN0 )
7271nn0red 9384 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  RR )
7372, 41letri3d 8223 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A )  <->  ( ( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A )  /\  ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) ) ) ) )
7428, 70, 73mpbir2and 947 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
7574anassrs 400 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =/=  0 )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
76 simpl3 1005 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  ->  B  e.  ZZ )
77 0zd 9419 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
0  e.  ZZ )
78 zdceq 9483 . . . 4  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
7976, 77, 78syl2anc 411 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> DECID  B  =  0 )
80 dcne 2389 . . 3  |-  (DECID  B  =  0  <->  ( B  =  0  \/  B  =/=  0 ) )
8179, 80sylib 122 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( B  =  0  \/  B  =/=  0
) )
8213, 75, 81mpjaodan 800 1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   0cc0 7960   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    < clt 8142    <_ cle 8143   NNcn 9071   NN0cn0 9330   ZZcz 9407   QQcq 9775   ^cexp 10720   abscabs 11423    || cdvds 12213    gcd cgcd 12389   Primecprime 12544    pCnt cpc 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-pc 12723
This theorem is referenced by:  pcgcd  12767
  Copyright terms: Public domain W3C validator