ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd1 Unicode version

Theorem pcgcd1 12310
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 5877 . . . 4  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
21oveq2d 5885 . . 3  |-  ( B  =  0  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  ( A  gcd  0 ) ) )
3 simp2 998 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
4 gcdid0 11964 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
65oveq2d 5885 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  ( abs `  A ) ) )
7 zq 9615 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
8 pcabs 12308 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
97, 8sylan2 286 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
1093adant3 1017 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
116, 10eqtrd 2210 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A
) )
1211adantr 276 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A ) )
132, 12sylan9eqr 2232 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =  0 )  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A ) )
14 simpl1 1000 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  Prime )
153adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
16 simpl3 1002 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
17 simprr 531 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  =/=  0 )
18 simpr 110 . . . . . . . . 9  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
1918necon3ai 2396 . . . . . . . 8  |-  ( B  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
2017, 19syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
21 gcdn0cl 11946 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
2215, 16, 20, 21syl21anc 1237 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  NN )
2322nnzd 9363 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  ZZ )
24 gcddvds 11947 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2515, 16, 24syl2anc 411 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2625simpld 112 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  ||  A )
27 pcdvdstr 12309 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  ( A  gcd  B )  ||  A ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2814, 23, 15, 26, 27syl13anc 1240 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2915, 7syl 14 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  QQ )
30 pcxcl 12294 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
3114, 29, 30syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR* )
32 pczcl 12281 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3314, 16, 17, 32syl12anc 1236 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3433nn0red 9219 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  RR )
35 pcge0 12295 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( P  pCnt  A
) )
3614, 15, 35syl2anc 411 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
0  <_  ( P  pCnt  A ) )
37 ge0gtmnf 9810 . . . . . . . . . 10  |-  ( ( ( P  pCnt  A
)  e.  RR*  /\  0  <_  ( P  pCnt  A
) )  -> -oo  <  ( P  pCnt  A )
)
3831, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> -oo  <  ( P  pCnt  A ) )
39 simprl 529 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
40 xrre 9807 . . . . . . . . 9  |-  ( ( ( ( P  pCnt  A )  e.  RR*  /\  ( P  pCnt  B )  e.  RR )  /\  ( -oo  <  ( P  pCnt  A )  /\  ( P 
pCnt  A )  <_  ( P  pCnt  B ) ) )  ->  ( P  pCnt  A )  e.  RR )
4131, 34, 38, 39, 40syl22anc 1239 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR )
42 pnfnre 7989 . . . . . . . . . . . 12  |- +oo  e/  RR
4342neli 2444 . . . . . . . . . . 11  |-  -. +oo  e.  RR
44 pc0 12287 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
4514, 44syl 14 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  0
)  = +oo )
4645eleq1d 2246 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  0 )  e.  RR  <-> +oo  e.  RR ) )
4743, 46mtbiri 675 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( P  pCnt  0
)  e.  RR )
48 oveq2 5877 . . . . . . . . . . . 12  |-  ( A  =  0  ->  ( P  pCnt  A )  =  ( P  pCnt  0
) )
4948eleq1d 2246 . . . . . . . . . . 11  |-  ( A  =  0  ->  (
( P  pCnt  A
)  e.  RR  <->  ( P  pCnt  0 )  e.  RR ) )
5049notbid 667 . . . . . . . . . 10  |-  ( A  =  0  ->  ( -.  ( P  pCnt  A
)  e.  RR  <->  -.  ( P  pCnt  0 )  e.  RR ) )
5147, 50syl5ibrcom 157 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  =  0  ->  -.  ( P  pCnt  A )  e.  RR ) )
5251necon2ad 2404 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  e.  RR  ->  A  =/=  0 ) )
5341, 52mpd 13 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  =/=  0 )
54 pczdvds 12296 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
5514, 15, 53, 54syl12anc 1236 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
56 pczcl 12281 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
5714, 15, 53, 56syl12anc 1236 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
58 pcdvdsb 12302 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  B  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
5914, 16, 57, 58syl3anc 1238 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
6039, 59mpbid 147 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  B )
61 prmnn 12093 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6214, 61syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  NN )
6362, 57nnexpcld 10661 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  NN )
6463nnzd 9363 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  ZZ )
65 dvdsgcd 11996 . . . . . . 7  |-  ( ( ( P ^ ( P  pCnt  A ) )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( P ^
( P  pCnt  A
) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6664, 15, 16, 65syl3anc 1238 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( ( P ^ ( P  pCnt  A ) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6755, 60, 66mp2and 433 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) )
68 pcdvdsb 12302 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  gcd  B )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
6914, 23, 57, 68syl3anc 1238 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B
) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
7067, 69mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  gcd  B
) ) )
7114, 22pccld 12283 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  NN0 )
7271nn0red 9219 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  RR )
7372, 41letri3d 8063 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A )  <->  ( ( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A )  /\  ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) ) ) ) )
7428, 70, 73mpbir2and 944 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
7574anassrs 400 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =/=  0 )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
76 simpl3 1002 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  ->  B  e.  ZZ )
77 0zd 9254 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
0  e.  ZZ )
78 zdceq 9317 . . . 4  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
7976, 77, 78syl2anc 411 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> DECID  B  =  0 )
80 dcne 2358 . . 3  |-  (DECID  B  =  0  <->  ( B  =  0  \/  B  =/=  0 ) )
8179, 80sylib 122 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( B  =  0  \/  B  =/=  0
) )
8213, 75, 81mpjaodan 798 1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   RRcr 7801   0cc0 7802   +oocpnf 7979   -oocmnf 7980   RR*cxr 7981    < clt 7982    <_ cle 7983   NNcn 8908   NN0cn0 9165   ZZcz 9242   QQcq 9608   ^cexp 10505   abscabs 10990    || cdvds 11778    gcd cgcd 11926   Primecprime 12090    pCnt cpc 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by:  pcgcd  12311
  Copyright terms: Public domain W3C validator