ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd1 Unicode version

Theorem pcgcd1 12651
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 5952 . . . 4  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
21oveq2d 5960 . . 3  |-  ( B  =  0  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  ( A  gcd  0 ) ) )
3 simp2 1001 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
4 gcdid0 12301 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
65oveq2d 5960 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  ( abs `  A ) ) )
7 zq 9747 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
8 pcabs 12649 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
97, 8sylan2 286 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
1093adant3 1020 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
116, 10eqtrd 2238 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A
) )
1211adantr 276 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A ) )
132, 12sylan9eqr 2260 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =  0 )  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A ) )
14 simpl1 1003 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  Prime )
153adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
16 simpl3 1005 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
17 simprr 531 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  =/=  0 )
18 simpr 110 . . . . . . . . 9  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
1918necon3ai 2425 . . . . . . . 8  |-  ( B  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
2017, 19syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
21 gcdn0cl 12283 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
2215, 16, 20, 21syl21anc 1249 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  NN )
2322nnzd 9494 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  ZZ )
24 gcddvds 12284 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2515, 16, 24syl2anc 411 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2625simpld 112 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  ||  A )
27 pcdvdstr 12650 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  ( A  gcd  B )  ||  A ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2814, 23, 15, 26, 27syl13anc 1252 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2915, 7syl 14 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  QQ )
30 pcxcl 12634 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
3114, 29, 30syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR* )
32 pczcl 12621 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3314, 16, 17, 32syl12anc 1248 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3433nn0red 9349 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  RR )
35 pcge0 12636 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( P  pCnt  A
) )
3614, 15, 35syl2anc 411 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
0  <_  ( P  pCnt  A ) )
37 ge0gtmnf 9945 . . . . . . . . . 10  |-  ( ( ( P  pCnt  A
)  e.  RR*  /\  0  <_  ( P  pCnt  A
) )  -> -oo  <  ( P  pCnt  A )
)
3831, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> -oo  <  ( P  pCnt  A ) )
39 simprl 529 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
40 xrre 9942 . . . . . . . . 9  |-  ( ( ( ( P  pCnt  A )  e.  RR*  /\  ( P  pCnt  B )  e.  RR )  /\  ( -oo  <  ( P  pCnt  A )  /\  ( P 
pCnt  A )  <_  ( P  pCnt  B ) ) )  ->  ( P  pCnt  A )  e.  RR )
4131, 34, 38, 39, 40syl22anc 1251 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR )
42 pnfnre 8114 . . . . . . . . . . . 12  |- +oo  e/  RR
4342neli 2473 . . . . . . . . . . 11  |-  -. +oo  e.  RR
44 pc0 12627 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
4514, 44syl 14 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  0
)  = +oo )
4645eleq1d 2274 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  0 )  e.  RR  <-> +oo  e.  RR ) )
4743, 46mtbiri 677 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( P  pCnt  0
)  e.  RR )
48 oveq2 5952 . . . . . . . . . . . 12  |-  ( A  =  0  ->  ( P  pCnt  A )  =  ( P  pCnt  0
) )
4948eleq1d 2274 . . . . . . . . . . 11  |-  ( A  =  0  ->  (
( P  pCnt  A
)  e.  RR  <->  ( P  pCnt  0 )  e.  RR ) )
5049notbid 669 . . . . . . . . . 10  |-  ( A  =  0  ->  ( -.  ( P  pCnt  A
)  e.  RR  <->  -.  ( P  pCnt  0 )  e.  RR ) )
5147, 50syl5ibrcom 157 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  =  0  ->  -.  ( P  pCnt  A )  e.  RR ) )
5251necon2ad 2433 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  e.  RR  ->  A  =/=  0 ) )
5341, 52mpd 13 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  =/=  0 )
54 pczdvds 12637 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
5514, 15, 53, 54syl12anc 1248 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
56 pczcl 12621 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
5714, 15, 53, 56syl12anc 1248 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
58 pcdvdsb 12643 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  B  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
5914, 16, 57, 58syl3anc 1250 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
6039, 59mpbid 147 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  B )
61 prmnn 12432 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6214, 61syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  NN )
6362, 57nnexpcld 10840 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  NN )
6463nnzd 9494 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  ZZ )
65 dvdsgcd 12333 . . . . . . 7  |-  ( ( ( P ^ ( P  pCnt  A ) )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( P ^
( P  pCnt  A
) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6664, 15, 16, 65syl3anc 1250 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( ( P ^ ( P  pCnt  A ) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6755, 60, 66mp2and 433 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) )
68 pcdvdsb 12643 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  gcd  B )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
6914, 23, 57, 68syl3anc 1250 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B
) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
7067, 69mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  gcd  B
) ) )
7114, 22pccld 12623 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  NN0 )
7271nn0red 9349 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  RR )
7372, 41letri3d 8188 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A )  <->  ( ( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A )  /\  ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) ) ) ) )
7428, 70, 73mpbir2and 947 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
7574anassrs 400 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =/=  0 )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
76 simpl3 1005 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  ->  B  e.  ZZ )
77 0zd 9384 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
0  e.  ZZ )
78 zdceq 9448 . . . 4  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
7976, 77, 78syl2anc 411 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> DECID  B  =  0 )
80 dcne 2387 . . 3  |-  (DECID  B  =  0  <->  ( B  =  0  \/  B  =/=  0 ) )
8179, 80sylib 122 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( B  =  0  \/  B  =/=  0
) )
8213, 75, 81mpjaodan 800 1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106    < clt 8107    <_ cle 8108   NNcn 9036   NN0cn0 9295   ZZcz 9372   QQcq 9740   ^cexp 10683   abscabs 11308    || cdvds 12098    gcd cgcd 12274   Primecprime 12429    pCnt cpc 12607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-prm 12430  df-pc 12608
This theorem is referenced by:  pcgcd  12652
  Copyright terms: Public domain W3C validator