| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcgcd1 | Unicode version | ||
| Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| pcgcd1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. . . 4
| |
| 2 | 1 | oveq2d 5983 |
. . 3
|
| 3 | simp2 1001 |
. . . . . . 7
| |
| 4 | gcdid0 12416 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 5 | oveq2d 5983 |
. . . . 5
|
| 7 | zq 9782 |
. . . . . . 7
| |
| 8 | pcabs 12764 |
. . . . . . 7
| |
| 9 | 7, 8 | sylan2 286 |
. . . . . 6
|
| 10 | 9 | 3adant3 1020 |
. . . . 5
|
| 11 | 6, 10 | eqtrd 2240 |
. . . 4
|
| 12 | 11 | adantr 276 |
. . 3
|
| 13 | 2, 12 | sylan9eqr 2262 |
. 2
|
| 14 | simpl1 1003 |
. . . . 5
| |
| 15 | 3 | adantr 276 |
. . . . . . 7
|
| 16 | simpl3 1005 |
. . . . . . 7
| |
| 17 | simprr 531 |
. . . . . . . 8
| |
| 18 | simpr 110 |
. . . . . . . . 9
| |
| 19 | 18 | necon3ai 2427 |
. . . . . . . 8
|
| 20 | 17, 19 | syl 14 |
. . . . . . 7
|
| 21 | gcdn0cl 12398 |
. . . . . . 7
| |
| 22 | 15, 16, 20, 21 | syl21anc 1249 |
. . . . . 6
|
| 23 | 22 | nnzd 9529 |
. . . . 5
|
| 24 | gcddvds 12399 |
. . . . . . 7
| |
| 25 | 15, 16, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 25 | simpld 112 |
. . . . 5
|
| 27 | pcdvdstr 12765 |
. . . . 5
| |
| 28 | 14, 23, 15, 26, 27 | syl13anc 1252 |
. . . 4
|
| 29 | 15, 7 | syl 14 |
. . . . . . . . . 10
|
| 30 | pcxcl 12749 |
. . . . . . . . . 10
| |
| 31 | 14, 29, 30 | syl2anc 411 |
. . . . . . . . 9
|
| 32 | pczcl 12736 |
. . . . . . . . . . 11
| |
| 33 | 14, 16, 17, 32 | syl12anc 1248 |
. . . . . . . . . 10
|
| 34 | 33 | nn0red 9384 |
. . . . . . . . 9
|
| 35 | pcge0 12751 |
. . . . . . . . . . 11
| |
| 36 | 14, 15, 35 | syl2anc 411 |
. . . . . . . . . 10
|
| 37 | ge0gtmnf 9980 |
. . . . . . . . . 10
| |
| 38 | 31, 36, 37 | syl2anc 411 |
. . . . . . . . 9
|
| 39 | simprl 529 |
. . . . . . . . 9
| |
| 40 | xrre 9977 |
. . . . . . . . 9
| |
| 41 | 31, 34, 38, 39, 40 | syl22anc 1251 |
. . . . . . . 8
|
| 42 | pnfnre 8149 |
. . . . . . . . . . . 12
| |
| 43 | 42 | neli 2475 |
. . . . . . . . . . 11
|
| 44 | pc0 12742 |
. . . . . . . . . . . . 13
| |
| 45 | 14, 44 | syl 14 |
. . . . . . . . . . . 12
|
| 46 | 45 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 47 | 43, 46 | mtbiri 677 |
. . . . . . . . . 10
|
| 48 | oveq2 5975 |
. . . . . . . . . . . 12
| |
| 49 | 48 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 50 | 49 | notbid 669 |
. . . . . . . . . 10
|
| 51 | 47, 50 | syl5ibrcom 157 |
. . . . . . . . 9
|
| 52 | 51 | necon2ad 2435 |
. . . . . . . 8
|
| 53 | 41, 52 | mpd 13 |
. . . . . . 7
|
| 54 | pczdvds 12752 |
. . . . . . 7
| |
| 55 | 14, 15, 53, 54 | syl12anc 1248 |
. . . . . 6
|
| 56 | pczcl 12736 |
. . . . . . . . 9
| |
| 57 | 14, 15, 53, 56 | syl12anc 1248 |
. . . . . . . 8
|
| 58 | pcdvdsb 12758 |
. . . . . . . 8
| |
| 59 | 14, 16, 57, 58 | syl3anc 1250 |
. . . . . . 7
|
| 60 | 39, 59 | mpbid 147 |
. . . . . 6
|
| 61 | prmnn 12547 |
. . . . . . . . . 10
| |
| 62 | 14, 61 | syl 14 |
. . . . . . . . 9
|
| 63 | 62, 57 | nnexpcld 10877 |
. . . . . . . 8
|
| 64 | 63 | nnzd 9529 |
. . . . . . 7
|
| 65 | dvdsgcd 12448 |
. . . . . . 7
| |
| 66 | 64, 15, 16, 65 | syl3anc 1250 |
. . . . . 6
|
| 67 | 55, 60, 66 | mp2and 433 |
. . . . 5
|
| 68 | pcdvdsb 12758 |
. . . . . 6
| |
| 69 | 14, 23, 57, 68 | syl3anc 1250 |
. . . . 5
|
| 70 | 67, 69 | mpbird 167 |
. . . 4
|
| 71 | 14, 22 | pccld 12738 |
. . . . . 6
|
| 72 | 71 | nn0red 9384 |
. . . . 5
|
| 73 | 72, 41 | letri3d 8223 |
. . . 4
|
| 74 | 28, 70, 73 | mpbir2and 947 |
. . 3
|
| 75 | 74 | anassrs 400 |
. 2
|
| 76 | simpl3 1005 |
. . . 4
| |
| 77 | 0zd 9419 |
. . . 4
| |
| 78 | zdceq 9483 |
. . . 4
| |
| 79 | 76, 77, 78 | syl2anc 411 |
. . 3
|
| 80 | dcne 2389 |
. . 3
| |
| 81 | 79, 80 | sylib 122 |
. 2
|
| 82 | 13, 75, 81 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-dvds 12214 df-gcd 12390 df-prm 12545 df-pc 12723 |
| This theorem is referenced by: pcgcd 12767 |
| Copyright terms: Public domain | W3C validator |