ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd1 Unicode version

Theorem pcgcd1 12466
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 5926 . . . 4  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
21oveq2d 5934 . . 3  |-  ( B  =  0  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  ( A  gcd  0 ) ) )
3 simp2 1000 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
4 gcdid0 12117 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
65oveq2d 5934 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  ( abs `  A ) ) )
7 zq 9691 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
8 pcabs 12464 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
97, 8sylan2 286 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
1093adant3 1019 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
116, 10eqtrd 2226 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A
) )
1211adantr 276 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A ) )
132, 12sylan9eqr 2248 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =  0 )  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A ) )
14 simpl1 1002 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  Prime )
153adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
16 simpl3 1004 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
17 simprr 531 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  =/=  0 )
18 simpr 110 . . . . . . . . 9  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
1918necon3ai 2413 . . . . . . . 8  |-  ( B  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
2017, 19syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
21 gcdn0cl 12099 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
2215, 16, 20, 21syl21anc 1248 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  NN )
2322nnzd 9438 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  ZZ )
24 gcddvds 12100 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2515, 16, 24syl2anc 411 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2625simpld 112 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  ||  A )
27 pcdvdstr 12465 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  ( A  gcd  B )  ||  A ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2814, 23, 15, 26, 27syl13anc 1251 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2915, 7syl 14 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  QQ )
30 pcxcl 12449 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
3114, 29, 30syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR* )
32 pczcl 12436 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3314, 16, 17, 32syl12anc 1247 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3433nn0red 9294 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  RR )
35 pcge0 12451 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( P  pCnt  A
) )
3614, 15, 35syl2anc 411 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
0  <_  ( P  pCnt  A ) )
37 ge0gtmnf 9889 . . . . . . . . . 10  |-  ( ( ( P  pCnt  A
)  e.  RR*  /\  0  <_  ( P  pCnt  A
) )  -> -oo  <  ( P  pCnt  A )
)
3831, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> -oo  <  ( P  pCnt  A ) )
39 simprl 529 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
40 xrre 9886 . . . . . . . . 9  |-  ( ( ( ( P  pCnt  A )  e.  RR*  /\  ( P  pCnt  B )  e.  RR )  /\  ( -oo  <  ( P  pCnt  A )  /\  ( P 
pCnt  A )  <_  ( P  pCnt  B ) ) )  ->  ( P  pCnt  A )  e.  RR )
4131, 34, 38, 39, 40syl22anc 1250 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR )
42 pnfnre 8061 . . . . . . . . . . . 12  |- +oo  e/  RR
4342neli 2461 . . . . . . . . . . 11  |-  -. +oo  e.  RR
44 pc0 12442 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
4514, 44syl 14 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  0
)  = +oo )
4645eleq1d 2262 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  0 )  e.  RR  <-> +oo  e.  RR ) )
4743, 46mtbiri 676 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( P  pCnt  0
)  e.  RR )
48 oveq2 5926 . . . . . . . . . . . 12  |-  ( A  =  0  ->  ( P  pCnt  A )  =  ( P  pCnt  0
) )
4948eleq1d 2262 . . . . . . . . . . 11  |-  ( A  =  0  ->  (
( P  pCnt  A
)  e.  RR  <->  ( P  pCnt  0 )  e.  RR ) )
5049notbid 668 . . . . . . . . . 10  |-  ( A  =  0  ->  ( -.  ( P  pCnt  A
)  e.  RR  <->  -.  ( P  pCnt  0 )  e.  RR ) )
5147, 50syl5ibrcom 157 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  =  0  ->  -.  ( P  pCnt  A )  e.  RR ) )
5251necon2ad 2421 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  e.  RR  ->  A  =/=  0 ) )
5341, 52mpd 13 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  =/=  0 )
54 pczdvds 12452 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
5514, 15, 53, 54syl12anc 1247 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
56 pczcl 12436 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
5714, 15, 53, 56syl12anc 1247 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
58 pcdvdsb 12458 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  B  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
5914, 16, 57, 58syl3anc 1249 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
6039, 59mpbid 147 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  B )
61 prmnn 12248 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6214, 61syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  NN )
6362, 57nnexpcld 10766 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  NN )
6463nnzd 9438 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  ZZ )
65 dvdsgcd 12149 . . . . . . 7  |-  ( ( ( P ^ ( P  pCnt  A ) )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( P ^
( P  pCnt  A
) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6664, 15, 16, 65syl3anc 1249 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( ( P ^ ( P  pCnt  A ) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6755, 60, 66mp2and 433 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) )
68 pcdvdsb 12458 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  gcd  B )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
6914, 23, 57, 68syl3anc 1249 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B
) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
7067, 69mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  gcd  B
) ) )
7114, 22pccld 12438 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  NN0 )
7271nn0red 9294 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  RR )
7372, 41letri3d 8135 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A )  <->  ( ( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A )  /\  ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) ) ) ) )
7428, 70, 73mpbir2and 946 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
7574anassrs 400 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =/=  0 )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
76 simpl3 1004 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  ->  B  e.  ZZ )
77 0zd 9329 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
0  e.  ZZ )
78 zdceq 9392 . . . 4  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
7976, 77, 78syl2anc 411 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> DECID  B  =  0 )
80 dcne 2375 . . 3  |-  (DECID  B  =  0  <->  ( B  =  0  \/  B  =/=  0 ) )
8179, 80sylib 122 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( B  =  0  \/  B  =/=  0
) )
8213, 75, 81mpjaodan 799 1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   +oocpnf 8051   -oocmnf 8052   RR*cxr 8053    < clt 8054    <_ cle 8055   NNcn 8982   NN0cn0 9240   ZZcz 9317   QQcq 9684   ^cexp 10609   abscabs 11141    || cdvds 11930    gcd cgcd 12079   Primecprime 12245    pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by:  pcgcd  12467
  Copyright terms: Public domain W3C validator