ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd1 Unicode version

Theorem pcgcd1 12508
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 5931 . . . 4  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
21oveq2d 5939 . . 3  |-  ( B  =  0  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  ( A  gcd  0 ) ) )
3 simp2 1000 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
4 gcdid0 12158 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
65oveq2d 5939 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  ( abs `  A ) ) )
7 zq 9703 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
8 pcabs 12506 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
97, 8sylan2 286 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
1093adant3 1019 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( abs `  A
) )  =  ( P  pCnt  A )
)
116, 10eqtrd 2229 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A
) )
1211adantr 276 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  0 ) )  =  ( P  pCnt  A ) )
132, 12sylan9eqr 2251 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =  0 )  ->  ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A ) )
14 simpl1 1002 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  Prime )
153adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
16 simpl3 1004 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
17 simprr 531 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  B  =/=  0 )
18 simpr 110 . . . . . . . . 9  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
1918necon3ai 2416 . . . . . . . 8  |-  ( B  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
2017, 19syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
21 gcdn0cl 12140 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
2215, 16, 20, 21syl21anc 1248 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  NN )
2322nnzd 9450 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  e.  ZZ )
24 gcddvds 12141 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2515, 16, 24syl2anc 411 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
2625simpld 112 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  gcd  B
)  ||  A )
27 pcdvdstr 12507 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  ( A  gcd  B )  ||  A ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2814, 23, 15, 26, 27syl13anc 1251 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A ) )
2915, 7syl 14 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  e.  QQ )
30 pcxcl 12491 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
3114, 29, 30syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR* )
32 pczcl 12478 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3314, 16, 17, 32syl12anc 1247 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  NN0 )
3433nn0red 9306 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  RR )
35 pcge0 12493 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( P  pCnt  A
) )
3614, 15, 35syl2anc 411 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
0  <_  ( P  pCnt  A ) )
37 ge0gtmnf 9901 . . . . . . . . . 10  |-  ( ( ( P  pCnt  A
)  e.  RR*  /\  0  <_  ( P  pCnt  A
) )  -> -oo  <  ( P  pCnt  A )
)
3831, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> -oo  <  ( P  pCnt  A ) )
39 simprl 529 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
40 xrre 9898 . . . . . . . . 9  |-  ( ( ( ( P  pCnt  A )  e.  RR*  /\  ( P  pCnt  B )  e.  RR )  /\  ( -oo  <  ( P  pCnt  A )  /\  ( P 
pCnt  A )  <_  ( P  pCnt  B ) ) )  ->  ( P  pCnt  A )  e.  RR )
4131, 34, 38, 39, 40syl22anc 1250 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  RR )
42 pnfnre 8071 . . . . . . . . . . . 12  |- +oo  e/  RR
4342neli 2464 . . . . . . . . . . 11  |-  -. +oo  e.  RR
44 pc0 12484 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
4514, 44syl 14 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  0
)  = +oo )
4645eleq1d 2265 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  0 )  e.  RR  <-> +oo  e.  RR ) )
4743, 46mtbiri 676 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  -.  ( P  pCnt  0
)  e.  RR )
48 oveq2 5931 . . . . . . . . . . . 12  |-  ( A  =  0  ->  ( P  pCnt  A )  =  ( P  pCnt  0
) )
4948eleq1d 2265 . . . . . . . . . . 11  |-  ( A  =  0  ->  (
( P  pCnt  A
)  e.  RR  <->  ( P  pCnt  0 )  e.  RR ) )
5049notbid 668 . . . . . . . . . 10  |-  ( A  =  0  ->  ( -.  ( P  pCnt  A
)  e.  RR  <->  -.  ( P  pCnt  0 )  e.  RR ) )
5147, 50syl5ibrcom 157 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( A  =  0  ->  -.  ( P  pCnt  A )  e.  RR ) )
5251necon2ad 2424 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  e.  RR  ->  A  =/=  0 ) )
5341, 52mpd 13 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  A  =/=  0 )
54 pczdvds 12494 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
5514, 15, 53, 54syl12anc 1247 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
56 pczcl 12478 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
5714, 15, 53, 56syl12anc 1247 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
58 pcdvdsb 12500 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  B  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
5914, 16, 57, 58syl3anc 1249 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
6039, 59mpbid 147 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  B )
61 prmnn 12289 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6214, 61syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  ->  P  e.  NN )
6362, 57nnexpcld 10790 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  NN )
6463nnzd 9450 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  ZZ )
65 dvdsgcd 12190 . . . . . . 7  |-  ( ( ( P ^ ( P  pCnt  A ) )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( P ^
( P  pCnt  A
) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6664, 15, 16, 65syl3anc 1249 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( ( P ^ ( P  pCnt  A ) )  ||  A  /\  ( P ^ ( P  pCnt  A ) ) 
||  B )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) ) )
6755, 60, 66mp2and 433 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  ( A  gcd  B ) )
68 pcdvdsb 12500 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  gcd  B )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
6914, 23, 57, 68syl3anc 1249 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B
) )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( A  gcd  B ) ) )
7067, 69mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  gcd  B
) ) )
7114, 22pccld 12480 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  NN0 )
7271nn0red 9306 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  e.  RR )
7372, 41letri3d 8145 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  ( A  gcd  B ) )  =  ( P 
pCnt  A )  <->  ( ( P  pCnt  ( A  gcd  B ) )  <_  ( P  pCnt  A )  /\  ( P  pCnt  A )  <_  ( P  pCnt  ( A  gcd  B ) ) ) ) )
7428, 70, 73mpbir2and 946 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( P  pCnt  A )  <_  ( P  pCnt  B )  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
7574anassrs 400 . 2  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  /\  B  =/=  0 )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
76 simpl3 1004 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  ->  B  e.  ZZ )
77 0zd 9341 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
0  e.  ZZ )
78 zdceq 9404 . . . 4  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
7976, 77, 78syl2anc 411 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> DECID  B  =  0 )
80 dcne 2378 . . 3  |-  (DECID  B  =  0  <->  ( B  =  0  \/  B  =/=  0 ) )
8179, 80sylib 122 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( B  =  0  \/  B  =/=  0
) )
8213, 75, 81mpjaodan 799 1  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   RRcr 7881   0cc0 7882   +oocpnf 8061   -oocmnf 8062   RR*cxr 8063    < clt 8064    <_ cle 8065   NNcn 8993   NN0cn0 9252   ZZcz 9329   QQcq 9696   ^cexp 10633   abscabs 11165    || cdvds 11955    gcd cgcd 12131   Primecprime 12286    pCnt cpc 12464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-frec 6451  df-1o 6476  df-2o 6477  df-er 6594  df-en 6802  df-sup 7052  df-inf 7053  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-fz 10087  df-fzo 10221  df-fl 10363  df-mod 10418  df-seqfrec 10543  df-exp 10634  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-dvds 11956  df-gcd 12132  df-prm 12287  df-pc 12465
This theorem is referenced by:  pcgcd  12509
  Copyright terms: Public domain W3C validator