ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmnfgt Unicode version

Theorem nmnfgt 9754
Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
nmnfgt  |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
)

Proof of Theorem nmnfgt
StepHypRef Expression
1 ngtmnft 9753 . . . 4  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
21biimpd 143 . . 3  |-  ( A  e.  RR*  ->  ( A  = -oo  ->  -. -oo 
<  A ) )
32necon2ad 2393 . 2  |-  ( A  e.  RR*  ->  ( -oo  <  A  ->  A  =/= -oo ) )
4 mnflt 9719 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
54adantl 275 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  e.  RR )  -> -oo  <  A )
6 mnfltpnf 9721 . . . . . 6  |- -oo  < +oo
7 breq2 3986 . . . . . 6  |-  ( A  = +oo  ->  ( -oo  <  A  <-> -oo  < +oo ) )
86, 7mpbiri 167 . . . . 5  |-  ( A  = +oo  -> -oo  <  A )
98adantl 275 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = +oo )  -> -oo  <  A )
10 simpr 109 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  ->  A  = -oo )
11 simplr 520 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  ->  A  =/= -oo )
1210, 11pm2.21ddne 2419 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  -> -oo  <  A )
13 elxr 9712 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1413biimpi 119 . . . . 5  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1514adantr 274 . . . 4  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
165, 9, 12, 15mpjao3dan 1297 . . 3  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  -> -oo  <  A )
1716ex 114 . 2  |-  ( A  e.  RR*  ->  ( A  =/= -oo  -> -oo  <  A ) )
183, 17impbid 128 1  |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 967    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938
This theorem is referenced by:  xlt2add  9816  xrmaxadd  11202  xblpnfps  13038  xblpnf  13039
  Copyright terms: Public domain W3C validator