Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nmnfgt | Unicode version |
Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
Ref | Expression |
---|---|
nmnfgt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngtmnft 9788 | . . . 4 | |
2 | 1 | biimpd 144 | . . 3 |
3 | 2 | necon2ad 2402 | . 2 |
4 | mnflt 9754 | . . . . 5 | |
5 | 4 | adantl 277 | . . . 4 |
6 | mnfltpnf 9756 | . . . . . 6 | |
7 | breq2 4002 | . . . . . 6 | |
8 | 6, 7 | mpbiri 168 | . . . . 5 |
9 | 8 | adantl 277 | . . . 4 |
10 | simpr 110 | . . . . 5 | |
11 | simplr 528 | . . . . 5 | |
12 | 10, 11 | pm2.21ddne 2428 | . . . 4 |
13 | elxr 9747 | . . . . . 6 | |
14 | 13 | biimpi 120 | . . . . 5 |
15 | 14 | adantr 276 | . . . 4 |
16 | 5, 9, 12, 15 | mpjao3dan 1307 | . . 3 |
17 | 16 | ex 115 | . 2 |
18 | 3, 17 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 w3o 977 wceq 1353 wcel 2146 wne 2345 class class class wbr 3998 cr 7785 cpnf 7963 cmnf 7964 cxr 7965 clt 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltirr 7898 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 |
This theorem is referenced by: xlt2add 9851 xrmaxadd 11237 xblpnfps 13469 xblpnf 13470 |
Copyright terms: Public domain | W3C validator |