ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmnfgt Unicode version

Theorem nmnfgt 9789
Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
nmnfgt  |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
)

Proof of Theorem nmnfgt
StepHypRef Expression
1 ngtmnft 9788 . . . 4  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
21biimpd 144 . . 3  |-  ( A  e.  RR*  ->  ( A  = -oo  ->  -. -oo 
<  A ) )
32necon2ad 2402 . 2  |-  ( A  e.  RR*  ->  ( -oo  <  A  ->  A  =/= -oo ) )
4 mnflt 9754 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
54adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  e.  RR )  -> -oo  <  A )
6 mnfltpnf 9756 . . . . . 6  |- -oo  < +oo
7 breq2 4002 . . . . . 6  |-  ( A  = +oo  ->  ( -oo  <  A  <-> -oo  < +oo ) )
86, 7mpbiri 168 . . . . 5  |-  ( A  = +oo  -> -oo  <  A )
98adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = +oo )  -> -oo  <  A )
10 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  ->  A  = -oo )
11 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  ->  A  =/= -oo )
1210, 11pm2.21ddne 2428 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  -> -oo  <  A )
13 elxr 9747 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1413biimpi 120 . . . . 5  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1514adantr 276 . . . 4  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
165, 9, 12, 15mpjao3dan 1307 . . 3  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  -> -oo  <  A )
1716ex 115 . 2  |-  ( A  e.  RR*  ->  ( A  =/= -oo  -> -oo  <  A ) )
183, 17impbid 129 1  |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    = wceq 1353    e. wcel 2146    =/= wne 2345   class class class wbr 3998   RRcr 7785   +oocpnf 7963   -oocmnf 7964   RR*cxr 7965    < clt 7966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltirr 7898
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971
This theorem is referenced by:  xlt2add  9851  xrmaxadd  11237  xblpnfps  13469  xblpnf  13470
  Copyright terms: Public domain W3C validator