ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmnfgt Unicode version

Theorem nmnfgt 9884
Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
nmnfgt  |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
)

Proof of Theorem nmnfgt
StepHypRef Expression
1 ngtmnft 9883 . . . 4  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
21biimpd 144 . . 3  |-  ( A  e.  RR*  ->  ( A  = -oo  ->  -. -oo 
<  A ) )
32necon2ad 2421 . 2  |-  ( A  e.  RR*  ->  ( -oo  <  A  ->  A  =/= -oo ) )
4 mnflt 9849 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
54adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  e.  RR )  -> -oo  <  A )
6 mnfltpnf 9851 . . . . . 6  |- -oo  < +oo
7 breq2 4033 . . . . . 6  |-  ( A  = +oo  ->  ( -oo  <  A  <-> -oo  < +oo ) )
86, 7mpbiri 168 . . . . 5  |-  ( A  = +oo  -> -oo  <  A )
98adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = +oo )  -> -oo  <  A )
10 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  ->  A  = -oo )
11 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  ->  A  =/= -oo )
1210, 11pm2.21ddne 2447 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  -> -oo  <  A )
13 elxr 9842 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1413biimpi 120 . . . . 5  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1514adantr 276 . . . 4  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
165, 9, 12, 15mpjao3dan 1318 . . 3  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  -> -oo  <  A )
1716ex 115 . 2  |-  ( A  e.  RR*  ->  ( A  =/= -oo  -> -oo  <  A ) )
183, 17impbid 129 1  |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029   RRcr 7871   +oocpnf 8051   -oocmnf 8052   RR*cxr 8053    < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059
This theorem is referenced by:  xlt2add  9946  xrmaxadd  11404  xblpnfps  14566  xblpnf  14567
  Copyright terms: Public domain W3C validator