ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmnfgt Unicode version

Theorem nmnfgt 9820
Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
nmnfgt  |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
)

Proof of Theorem nmnfgt
StepHypRef Expression
1 ngtmnft 9819 . . . 4  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
21biimpd 144 . . 3  |-  ( A  e.  RR*  ->  ( A  = -oo  ->  -. -oo 
<  A ) )
32necon2ad 2404 . 2  |-  ( A  e.  RR*  ->  ( -oo  <  A  ->  A  =/= -oo ) )
4 mnflt 9785 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
54adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  e.  RR )  -> -oo  <  A )
6 mnfltpnf 9787 . . . . . 6  |- -oo  < +oo
7 breq2 4009 . . . . . 6  |-  ( A  = +oo  ->  ( -oo  <  A  <-> -oo  < +oo ) )
86, 7mpbiri 168 . . . . 5  |-  ( A  = +oo  -> -oo  <  A )
98adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = +oo )  -> -oo  <  A )
10 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  ->  A  = -oo )
11 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  ->  A  =/= -oo )
1210, 11pm2.21ddne 2430 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  A  = -oo )  -> -oo  <  A )
13 elxr 9778 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1413biimpi 120 . . . . 5  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1514adantr 276 . . . 4  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
165, 9, 12, 15mpjao3dan 1307 . . 3  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  -> -oo  <  A )
1716ex 115 . 2  |-  ( A  e.  RR*  ->  ( A  =/= -oo  -> -oo  <  A ) )
183, 17impbid 129 1  |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4005   RRcr 7812   +oocpnf 7991   -oocmnf 7992   RR*cxr 7993    < clt 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999
This theorem is referenced by:  xlt2add  9882  xrmaxadd  11271  xblpnfps  13983  xblpnf  13984
  Copyright terms: Public domain W3C validator