ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltne Unicode version

Theorem xrltne 9905
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
Assertion
Ref Expression
xrltne  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  =/=  A )

Proof of Theorem xrltne
StepHypRef Expression
1 xrltnr 9871 . . . . 5  |-  ( A  e.  RR*  ->  -.  A  <  A )
2 breq2 4038 . . . . . 6  |-  ( B  =  A  ->  ( A  <  B  <->  A  <  A ) )
32notbid 668 . . . . 5  |-  ( B  =  A  ->  ( -.  A  <  B  <->  -.  A  <  A ) )
41, 3syl5ibrcom 157 . . . 4  |-  ( A  e.  RR*  ->  ( B  =  A  ->  -.  A  <  B ) )
54necon2ad 2424 . . 3  |-  ( A  e.  RR*  ->  ( A  <  B  ->  B  =/=  A ) )
65imp 124 . 2  |-  ( ( A  e.  RR*  /\  A  <  B )  ->  B  =/=  A )
763adant2 1018 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   RR*cxr 8077    < clt 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator