ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltne Unicode version

Theorem xrltne 9970
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
Assertion
Ref Expression
xrltne  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  =/=  A )

Proof of Theorem xrltne
StepHypRef Expression
1 xrltnr 9936 . . . . 5  |-  ( A  e.  RR*  ->  -.  A  <  A )
2 breq2 4063 . . . . . 6  |-  ( B  =  A  ->  ( A  <  B  <->  A  <  A ) )
32notbid 669 . . . . 5  |-  ( B  =  A  ->  ( -.  A  <  B  <->  -.  A  <  A ) )
41, 3syl5ibrcom 157 . . . 4  |-  ( A  e.  RR*  ->  ( B  =  A  ->  -.  A  <  B ) )
54necon2ad 2435 . . 3  |-  ( A  e.  RR*  ->  ( A  <  B  ->  B  =/=  A ) )
65imp 124 . 2  |-  ( ( A  e.  RR*  /\  A  <  B )  ->  B  =/=  A )
763adant2 1019 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   class class class wbr 4059   RR*cxr 8141    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator