ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npnflt Unicode version

Theorem npnflt 9972
Description: An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
npnflt  |-  ( A  e.  RR*  ->  ( A  < +oo  <->  A  =/= +oo )
)

Proof of Theorem npnflt
StepHypRef Expression
1 nltpnft 9971 . . . 4  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
21biimpd 144 . . 3  |-  ( A  e.  RR*  ->  ( A  = +oo  ->  -.  A  < +oo ) )
32necon2ad 2435 . 2  |-  ( A  e.  RR*  ->  ( A  < +oo  ->  A  =/= +oo ) )
4 ltpnf 9937 . . . . 5  |-  ( A  e.  RR  ->  A  < +oo )
54adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  e.  RR )  ->  A  < +oo )
6 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  = +oo )  ->  A  = +oo )
7 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  = +oo )  ->  A  =/= +oo )
86, 7pm2.21ddne 2461 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  = +oo )  ->  A  < +oo )
9 mnfltpnf 9942 . . . . . 6  |- -oo  < +oo
10 breq1 4062 . . . . . 6  |-  ( A  = -oo  ->  ( A  < +oo  <-> -oo  < +oo )
)
119, 10mpbiri 168 . . . . 5  |-  ( A  = -oo  ->  A  < +oo )
1211adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  = -oo )  ->  A  < +oo )
13 elxr 9933 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1413biimpi 120 . . . . 5  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1514adantr 276 . . . 4  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
165, 8, 12, 15mpjao3dan 1320 . . 3  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  A  < +oo )
1716ex 115 . 2  |-  ( A  e.  RR*  ->  ( A  =/= +oo  ->  A  < +oo ) )
183, 17impbid 129 1  |-  ( A  e.  RR*  ->  ( A  < +oo  <->  A  =/= +oo )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    = wceq 1373    e. wcel 2178    =/= wne 2378   class class class wbr 4059   RRcr 7959   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147
This theorem is referenced by:  xlt2add  10037  xrmaxadd  11687
  Copyright terms: Public domain W3C validator