ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npnflt Unicode version

Theorem npnflt 9937
Description: An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
npnflt  |-  ( A  e.  RR*  ->  ( A  < +oo  <->  A  =/= +oo )
)

Proof of Theorem npnflt
StepHypRef Expression
1 nltpnft 9936 . . . 4  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
21biimpd 144 . . 3  |-  ( A  e.  RR*  ->  ( A  = +oo  ->  -.  A  < +oo ) )
32necon2ad 2433 . 2  |-  ( A  e.  RR*  ->  ( A  < +oo  ->  A  =/= +oo ) )
4 ltpnf 9902 . . . . 5  |-  ( A  e.  RR  ->  A  < +oo )
54adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  e.  RR )  ->  A  < +oo )
6 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  = +oo )  ->  A  = +oo )
7 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  = +oo )  ->  A  =/= +oo )
86, 7pm2.21ddne 2459 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  = +oo )  ->  A  < +oo )
9 mnfltpnf 9907 . . . . . 6  |- -oo  < +oo
10 breq1 4047 . . . . . 6  |-  ( A  = -oo  ->  ( A  < +oo  <-> -oo  < +oo )
)
119, 10mpbiri 168 . . . . 5  |-  ( A  = -oo  ->  A  < +oo )
1211adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  A  = -oo )  ->  A  < +oo )
13 elxr 9898 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1413biimpi 120 . . . . 5  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1514adantr 276 . . . 4  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
165, 8, 12, 15mpjao3dan 1320 . . 3  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  A  < +oo )
1716ex 115 . 2  |-  ( A  e.  RR*  ->  ( A  =/= +oo  ->  A  < +oo ) )
183, 17impbid 129 1  |-  ( A  e.  RR*  ->  ( A  < +oo  <->  A  =/= +oo )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044   RRcr 7924   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112
This theorem is referenced by:  xlt2add  10002  xrmaxadd  11572
  Copyright terms: Public domain W3C validator