ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsmod Unicode version

Theorem lgsmod 13721
Description: The Legendre (Jacobi) symbol is preserved under reduction  mod  n when  n is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsmod  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( ( A  mod  N )  /L N )  =  ( A  /L N ) )

Proof of Theorem lgsmod
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 zmodcl 10300 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  mod  N
)  e.  NN0 )
213adant3 1012 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( A  mod  N
)  e.  NN0 )
32nn0zd 9332 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( A  mod  N
)  e.  ZZ )
43ad2antrr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  ( A  mod  N )  e.  ZZ )
5 simpr 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  n  e.  Prime )
65adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  Prime )
7 simpl3 997 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  -.  2  ||  N )
8 breq1 3992 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  2  ->  (
n  ||  N  <->  2  ||  N ) )
98notbid 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  2  ->  ( -.  n  ||  N  <->  -.  2  ||  N ) )
107, 9syl5ibrcom 156 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( n  =  2  ->  -.  n  ||  N ) )
1110necon2ad 2397 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( n  ||  N  ->  n  =/=  2
) )
1211imp 123 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  =/=  2 )
13 eldifsn 3710 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( Prime  \  {
2 } )  <->  ( n  e.  Prime  /\  n  =/=  2 ) )
146, 12, 13sylanbrc 415 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  ( Prime  \  { 2 } ) )
15 oddprm 12213 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( Prime  \  {
2 } )  -> 
( ( n  - 
1 )  /  2
)  e.  NN )
1614, 15syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( n  -  1 )  /  2 )  e.  NN )
1716nnnn0d 9188 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( n  -  1 )  /  2 )  e.  NN0 )
18 zexpcl 10491 . . . . . . . . . . . . . 14  |-  ( ( ( A  mod  N
)  e.  ZZ  /\  ( ( n  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( A  mod  N ) ^ ( ( n  -  1 )  /  2 ) )  e.  ZZ )
194, 17, 18syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  e.  ZZ )
20 zq 9585 . . . . . . . . . . . . 13  |-  ( ( ( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  e.  ZZ  ->  (
( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  e.  QQ )
2119, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  e.  QQ )
22 simpll1 1031 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  A  e.  ZZ )
23 zexpcl 10491 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( ( n  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( n  -  1 )  /  2 ) )  e.  ZZ )
2422, 17, 23syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  e.  ZZ )
25 zq 9585 . . . . . . . . . . . . 13  |-  ( ( A ^ ( ( n  -  1 )  /  2 ) )  e.  ZZ  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  e.  QQ )
2624, 25syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  e.  QQ )
27 1z 9238 . . . . . . . . . . . . 13  |-  1  e.  ZZ
28 zq 9585 . . . . . . . . . . . . 13  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
2927, 28mp1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  1  e.  QQ )
30 prmz 12065 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  n  e.  ZZ )
3130ad2antlr 486 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  ZZ )
32 zq 9585 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  QQ )
3331, 32syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  QQ )
34 prmnn 12064 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  n  e.  NN )
3534ad2antlr 486 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  NN )
3635nngt0d 8922 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  0  <  n )
37 simp2 993 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN )
3837ad2antrr 485 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  N  e.  NN )
3938nnzd 9333 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  N  e.  ZZ )
404, 22zsubcld 9339 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  -  A )  e.  ZZ )
41 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  ||  N )
42 zq 9585 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  A  e.  QQ )
4322, 42syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  A  e.  QQ )
44 zq 9585 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  N  e.  QQ )
4539, 44syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  N  e.  QQ )
4638nngt0d 8922 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  0  <  N )
47 modqabs2 10314 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( A  mod  N
)  mod  N )  =  ( A  mod  N ) )
4843, 45, 46, 47syl3anc 1233 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  mod  N )  =  ( A  mod  N ) )
49 moddvds 11761 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( A  mod  N )  e.  ZZ  /\  A  e.  ZZ )  ->  (
( ( A  mod  N )  mod  N )  =  ( A  mod  N )  <->  N  ||  ( ( A  mod  N )  -  A ) ) )
5038, 4, 22, 49syl3anc 1233 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( A  mod  N )  mod  N )  =  ( A  mod  N )  <->  N  ||  ( ( A  mod  N )  -  A ) ) )
5148, 50mpbid 146 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  N  ||  ( ( A  mod  N )  -  A ) )
5231, 39, 40, 41, 51dvdstrd 11792 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  ||  ( ( A  mod  N )  -  A ) )
53 moddvds 11761 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( A  mod  N )  e.  ZZ  /\  A  e.  ZZ )  ->  (
( ( A  mod  N )  mod  n )  =  ( A  mod  n )  <->  n  ||  (
( A  mod  N
)  -  A ) ) )
5435, 4, 22, 53syl3anc 1233 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( A  mod  N )  mod  n )  =  ( A  mod  n )  <->  n  ||  (
( A  mod  N
)  -  A ) ) )
5552, 54mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  mod  n )  =  ( A  mod  n ) )
564, 22, 17, 33, 36, 55modqexp 10602 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( A  mod  N ) ^ ( ( n  -  1 )  /  2 ) )  mod  n )  =  ( ( A ^
( ( n  - 
1 )  /  2
) )  mod  n
) )
5721, 26, 29, 33, 36, 56modqadd1 10317 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( ( A  mod  N ) ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n ) )
5857oveq1d 5868 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( ( ( A  mod  N ) ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) )
59 lgsval3 13713 . . . . . . . . . . 11  |-  ( ( ( A  mod  N
)  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  mod  N )  /L n )  =  ( ( ( ( ( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )
604, 14, 59syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  /L n )  =  ( ( ( ( ( A  mod  N ) ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 ) )
61 lgsval3 13713 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L n )  =  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )
6222, 14, 61syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  ( A  /L n )  =  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) )
6358, 60, 623eqtr4d 2213 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  /L n )  =  ( A  /L n ) )
6463oveq1d 5868 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( A  mod  N )  /L n ) ^ ( n 
pCnt  N ) )  =  ( ( A  /L n ) ^
( n  pCnt  N
) ) )
653ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( A  mod  N
)  e.  ZZ )
6630ad2antlr 486 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  ->  n  e.  ZZ )
67 lgscl 13709 . . . . . . . . . . . . 13  |-  ( ( ( A  mod  N
)  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( A  mod  N )  /L n )  e.  ZZ )
6865, 66, 67syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( A  mod  N )  /L n )  e.  ZZ )
6968zcnd 9335 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( A  mod  N )  /L n )  e.  CC )
7069exp0d 10603 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( ( A  mod  N )  /L n ) ^
0 )  =  1 )
71 simpll1 1031 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  ->  A  e.  ZZ )
72 lgscl 13709 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  n  e.  ZZ )  ->  ( A  /L
n )  e.  ZZ )
7371, 66, 72syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( A  /L
n )  e.  ZZ )
7473zcnd 9335 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( A  /L
n )  e.  CC )
7574exp0d 10603 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( A  /L n ) ^
0 )  =  1 )
7670, 75eqtr4d 2206 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( ( A  mod  N )  /L n ) ^
0 )  =  ( ( A  /L
n ) ^ 0 ) )
7737adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  N  e.  NN )
78 pceq0 12275 . . . . . . . . . . . 12  |-  ( ( n  e.  Prime  /\  N  e.  NN )  ->  (
( n  pCnt  N
)  =  0  <->  -.  n  ||  N ) )
795, 77, 78syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( ( n 
pCnt  N )  =  0  <->  -.  n  ||  N ) )
8079biimpar 295 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( n  pCnt  N
)  =  0 )
8180oveq2d 5869 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) )  =  ( ( ( A  mod  N )  /L n ) ^ 0 ) )
8280oveq2d 5869 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( A  /L n ) ^
( n  pCnt  N
) )  =  ( ( A  /L
n ) ^ 0 ) )
8376, 81, 823eqtr4d 2213 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) )  =  ( ( A  /L
n ) ^ (
n  pCnt  N )
) )
8434adantl 275 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  n  e.  NN )
8577nnzd 9333 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  N  e.  ZZ )
86 dvdsdc 11760 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  N  e.  ZZ )  -> DECID  n 
||  N )
8784, 85, 86syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  -> DECID 
n  ||  N )
88 exmiddc 831 . . . . . . . . 9  |-  (DECID  n  ||  N  ->  ( n  ||  N  \/  -.  n  ||  N ) )
8987, 88syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( n  ||  N  \/  -.  n  ||  N ) )
9064, 83, 89mpjaodan 793 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( ( ( A  mod  N )  /L n ) ^ ( n  pCnt  N ) )  =  ( ( A  /L
n ) ^ (
n  pCnt  N )
) )
9190adantlr 474 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
( ( A  mod  N )  /L n ) ^ ( n 
pCnt  N ) )  =  ( ( A  /L n ) ^
( n  pCnt  N
) ) )
92 prmdc 12084 . . . . . . 7  |-  ( n  e.  NN  -> DECID  n  e.  Prime )
9392adantl 275 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  NN )  -> DECID 
n  e.  Prime )
9491, 93ifeq1dadc 3556 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  NN )  ->  if ( n  e.  Prime ,  ( ( ( A  mod  N
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 )  =  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )
9594mpteq2dva 4079 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) )
9695seqeq3d 10409 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) )  =  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) )
9796fveq1d 5498 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 N )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  N
) )
98 eqid 2170 . . . 4  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )
9998lgsval4a 13717 . . 3  |-  ( ( ( A  mod  N
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  mod  N )  /L N )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  N ) )
1003, 37, 99syl2anc 409 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( ( A  mod  N )  /L N )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  N ) )
101 eqid 2170 . . . 4  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
102101lgsval4a 13717 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  /L
N )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 N ) )
1031023adant3 1012 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( A  /L
N )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 N ) )
10497, 100, 1033eqtr4d 2213 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( ( A  mod  N )  /L N )  =  ( A  /L N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340    \ cdif 3118   ifcif 3526   {csn 3583   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    - cmin 8090    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   QQcq 9578    mod cmo 10278    seqcseq 10401   ^cexp 10475    || cdvds 11749   Primecprime 12061    pCnt cpc 12238    /Lclgs 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165  df-pc 12239  df-lgs 13693
This theorem is referenced by:  lgsmodeq  13740
  Copyright terms: Public domain W3C validator