ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsmod Unicode version

Theorem lgsmod 14430
Description: The Legendre (Jacobi) symbol is preserved under reduction  mod  n when  n is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsmod  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( ( A  mod  N )  /L N )  =  ( A  /L N ) )

Proof of Theorem lgsmod
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 zmodcl 10344 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  mod  N
)  e.  NN0 )
213adant3 1017 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( A  mod  N
)  e.  NN0 )
32nn0zd 9373 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( A  mod  N
)  e.  ZZ )
43ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  ( A  mod  N )  e.  ZZ )
5 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  n  e.  Prime )
65adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  Prime )
7 simpl3 1002 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  -.  2  ||  N )
8 breq1 4007 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  2  ->  (
n  ||  N  <->  2  ||  N ) )
98notbid 667 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  2  ->  ( -.  n  ||  N  <->  -.  2  ||  N ) )
107, 9syl5ibrcom 157 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( n  =  2  ->  -.  n  ||  N ) )
1110necon2ad 2404 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( n  ||  N  ->  n  =/=  2
) )
1211imp 124 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  =/=  2 )
13 eldifsn 3720 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( Prime  \  {
2 } )  <->  ( n  e.  Prime  /\  n  =/=  2 ) )
146, 12, 13sylanbrc 417 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  ( Prime  \  { 2 } ) )
15 oddprm 12259 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( Prime  \  {
2 } )  -> 
( ( n  - 
1 )  /  2
)  e.  NN )
1614, 15syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( n  -  1 )  /  2 )  e.  NN )
1716nnnn0d 9229 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( n  -  1 )  /  2 )  e.  NN0 )
18 zexpcl 10535 . . . . . . . . . . . . . 14  |-  ( ( ( A  mod  N
)  e.  ZZ  /\  ( ( n  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( A  mod  N ) ^ ( ( n  -  1 )  /  2 ) )  e.  ZZ )
194, 17, 18syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  e.  ZZ )
20 zq 9626 . . . . . . . . . . . . 13  |-  ( ( ( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  e.  ZZ  ->  (
( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  e.  QQ )
2119, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  e.  QQ )
22 simpll1 1036 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  A  e.  ZZ )
23 zexpcl 10535 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( ( n  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( n  -  1 )  /  2 ) )  e.  ZZ )
2422, 17, 23syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  e.  ZZ )
25 zq 9626 . . . . . . . . . . . . 13  |-  ( ( A ^ ( ( n  -  1 )  /  2 ) )  e.  ZZ  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  e.  QQ )
2624, 25syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  e.  QQ )
27 1z 9279 . . . . . . . . . . . . 13  |-  1  e.  ZZ
28 zq 9626 . . . . . . . . . . . . 13  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
2927, 28mp1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  1  e.  QQ )
30 prmz 12111 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  n  e.  ZZ )
3130ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  ZZ )
32 zq 9626 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  QQ )
3331, 32syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  QQ )
34 prmnn 12110 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  n  e.  NN )
3534ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  e.  NN )
3635nngt0d 8963 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  0  <  n )
37 simp2 998 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN )
3837ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  N  e.  NN )
3938nnzd 9374 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  N  e.  ZZ )
404, 22zsubcld 9380 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  -  A )  e.  ZZ )
41 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  ||  N )
42 zq 9626 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  A  e.  QQ )
4322, 42syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  A  e.  QQ )
44 zq 9626 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  N  e.  QQ )
4539, 44syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  N  e.  QQ )
4638nngt0d 8963 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  0  <  N )
47 modqabs2 10358 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( A  mod  N
)  mod  N )  =  ( A  mod  N ) )
4843, 45, 46, 47syl3anc 1238 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  mod  N )  =  ( A  mod  N ) )
49 moddvds 11806 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( A  mod  N )  e.  ZZ  /\  A  e.  ZZ )  ->  (
( ( A  mod  N )  mod  N )  =  ( A  mod  N )  <->  N  ||  ( ( A  mod  N )  -  A ) ) )
5038, 4, 22, 49syl3anc 1238 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( A  mod  N )  mod  N )  =  ( A  mod  N )  <->  N  ||  ( ( A  mod  N )  -  A ) ) )
5148, 50mpbid 147 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  N  ||  ( ( A  mod  N )  -  A ) )
5231, 39, 40, 41, 51dvdstrd 11837 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  n  ||  ( ( A  mod  N )  -  A ) )
53 moddvds 11806 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( A  mod  N )  e.  ZZ  /\  A  e.  ZZ )  ->  (
( ( A  mod  N )  mod  n )  =  ( A  mod  n )  <->  n  ||  (
( A  mod  N
)  -  A ) ) )
5435, 4, 22, 53syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( A  mod  N )  mod  n )  =  ( A  mod  n )  <->  n  ||  (
( A  mod  N
)  -  A ) ) )
5552, 54mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  mod  n )  =  ( A  mod  n ) )
564, 22, 17, 33, 36, 55modqexp 10647 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( A  mod  N ) ^ ( ( n  -  1 )  /  2 ) )  mod  n )  =  ( ( A ^
( ( n  - 
1 )  /  2
) )  mod  n
) )
5721, 26, 29, 33, 36, 56modqadd1 10361 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( ( A  mod  N ) ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n ) )
5857oveq1d 5890 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( ( ( A  mod  N ) ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) )
59 lgsval3 14422 . . . . . . . . . . 11  |-  ( ( ( A  mod  N
)  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  mod  N )  /L n )  =  ( ( ( ( ( A  mod  N
) ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )
604, 14, 59syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  /L n )  =  ( ( ( ( ( A  mod  N ) ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 ) )
61 lgsval3 14422 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L n )  =  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )
6222, 14, 61syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  ( A  /L n )  =  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) )
6358, 60, 623eqtr4d 2220 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( A  mod  N
)  /L n )  =  ( A  /L n ) )
6463oveq1d 5890 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  n  ||  N )  ->  (
( ( A  mod  N )  /L n ) ^ ( n 
pCnt  N ) )  =  ( ( A  /L n ) ^
( n  pCnt  N
) ) )
653ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( A  mod  N
)  e.  ZZ )
6630ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  ->  n  e.  ZZ )
67 lgscl 14418 . . . . . . . . . . . . 13  |-  ( ( ( A  mod  N
)  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( A  mod  N )  /L n )  e.  ZZ )
6865, 66, 67syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( A  mod  N )  /L n )  e.  ZZ )
6968zcnd 9376 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( A  mod  N )  /L n )  e.  CC )
7069exp0d 10648 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( ( A  mod  N )  /L n ) ^
0 )  =  1 )
71 simpll1 1036 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  ->  A  e.  ZZ )
72 lgscl 14418 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  n  e.  ZZ )  ->  ( A  /L
n )  e.  ZZ )
7371, 66, 72syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( A  /L
n )  e.  ZZ )
7473zcnd 9376 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( A  /L
n )  e.  CC )
7574exp0d 10648 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( A  /L n ) ^
0 )  =  1 )
7670, 75eqtr4d 2213 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( ( A  mod  N )  /L n ) ^
0 )  =  ( ( A  /L
n ) ^ 0 ) )
7737adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  N  e.  NN )
78 pceq0 12321 . . . . . . . . . . . 12  |-  ( ( n  e.  Prime  /\  N  e.  NN )  ->  (
( n  pCnt  N
)  =  0  <->  -.  n  ||  N ) )
795, 77, 78syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( ( n 
pCnt  N )  =  0  <->  -.  n  ||  N ) )
8079biimpar 297 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( n  pCnt  N
)  =  0 )
8180oveq2d 5891 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) )  =  ( ( ( A  mod  N )  /L n ) ^ 0 ) )
8280oveq2d 5891 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( A  /L n ) ^
( n  pCnt  N
) )  =  ( ( A  /L
n ) ^ 0 ) )
8376, 81, 823eqtr4d 2220 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  /\  -.  n  ||  N )  -> 
( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) )  =  ( ( A  /L
n ) ^ (
n  pCnt  N )
) )
8434adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  n  e.  NN )
8577nnzd 9374 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  N  e.  ZZ )
86 dvdsdc 11805 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  N  e.  ZZ )  -> DECID  n 
||  N )
8784, 85, 86syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  -> DECID 
n  ||  N )
88 exmiddc 836 . . . . . . . . 9  |-  (DECID  n  ||  N  ->  ( n  ||  N  \/  -.  n  ||  N ) )
8987, 88syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( n  ||  N  \/  -.  n  ||  N ) )
9064, 83, 89mpjaodan 798 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  Prime )  ->  ( ( ( A  mod  N )  /L n ) ^ ( n  pCnt  N ) )  =  ( ( A  /L
n ) ^ (
n  pCnt  N )
) )
9190adantlr 477 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
( ( A  mod  N )  /L n ) ^ ( n 
pCnt  N ) )  =  ( ( A  /L n ) ^
( n  pCnt  N
) ) )
92 prmdc 12130 . . . . . . 7  |-  ( n  e.  NN  -> DECID  n  e.  Prime )
9392adantl 277 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  NN )  -> DECID 
n  e.  Prime )
9491, 93ifeq1dadc 3565 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  /\  n  e.  NN )  ->  if ( n  e.  Prime ,  ( ( ( A  mod  N
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 )  =  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )
9594mpteq2dva 4094 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) )
9695seqeq3d 10453 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) )  =  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) )
9796fveq1d 5518 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 N )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  N
) )
98 eqid 2177 . . . 4  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )
9998lgsval4a 14426 . . 3  |-  ( ( ( A  mod  N
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  mod  N )  /L N )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  N ) )
1003, 37, 99syl2anc 411 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( ( A  mod  N )  /L N )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  mod  N )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  N ) )
101 eqid 2177 . . . 4  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
102101lgsval4a 14426 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  /L
N )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 N ) )
1031023adant3 1017 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( A  /L
N )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 N ) )
10497, 100, 1033eqtr4d 2220 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( ( A  mod  N )  /L N )  =  ( A  /L N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347    \ cdif 3127   ifcif 3535   {csn 3593   class class class wbr 4004    |-> cmpt 4065   ` cfv 5217  (class class class)co 5875   0cc0 7811   1c1 7812    + caddc 7814    x. cmul 7816    < clt 7992    - cmin 8128    / cdiv 8629   NNcn 8919   2c2 8970   NN0cn0 9176   ZZcz 9253   QQcq 9619    mod cmo 10322    seqcseq 10445   ^cexp 10519    || cdvds 11794   Primecprime 12107    pCnt cpc 12284    /Lclgs 14401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-2o 6418  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-proddc 11559  df-dvds 11795  df-gcd 11944  df-prm 12108  df-phi 12211  df-pc 12285  df-lgs 14402
This theorem is referenced by:  lgsmodeq  14449
  Copyright terms: Public domain W3C validator