ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz7.2 Unicode version

Theorem tz7.2 4385
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent  _E  Fr  A. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 4136 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
2 efrirr 4384 . . . . 5  |-  (  _E  Fr  A  ->  -.  A  e.  A )
3 eleq1 2256 . . . . . 6  |-  ( B  =  A  ->  ( B  e.  A  <->  A  e.  A ) )
43notbid 668 . . . . 5  |-  ( B  =  A  ->  ( -.  B  e.  A  <->  -.  A  e.  A ) )
52, 4syl5ibrcom 157 . . . 4  |-  (  _E  Fr  A  ->  ( B  =  A  ->  -.  B  e.  A ) )
65necon2ad 2421 . . 3  |-  (  _E  Fr  A  ->  ( B  e.  A  ->  B  =/=  A ) )
71, 6anim12ii 343 . 2  |-  ( ( Tr  A  /\  _E  Fr  A )  ->  ( B  e.  A  ->  ( B  C_  A  /\  B  =/=  A ) ) )
873impia 1202 1  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364    C_ wss 3153   Tr wtr 4127    _E cep 4318    Fr wfr 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-eprel 4320  df-frfor 4362  df-frind 4363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator