ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz7.2 Unicode version

Theorem tz7.2 4356
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent  _E  Fr  A. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 4112 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
2 efrirr 4355 . . . . 5  |-  (  _E  Fr  A  ->  -.  A  e.  A )
3 eleq1 2240 . . . . . 6  |-  ( B  =  A  ->  ( B  e.  A  <->  A  e.  A ) )
43notbid 667 . . . . 5  |-  ( B  =  A  ->  ( -.  B  e.  A  <->  -.  A  e.  A ) )
52, 4syl5ibrcom 157 . . . 4  |-  (  _E  Fr  A  ->  ( B  =  A  ->  -.  B  e.  A ) )
65necon2ad 2404 . . 3  |-  (  _E  Fr  A  ->  ( B  e.  A  ->  B  =/=  A ) )
71, 6anim12ii 343 . 2  |-  ( ( Tr  A  /\  _E  Fr  A )  ->  ( B  e.  A  ->  ( B  C_  A  /\  B  =/=  A ) ) )
873impia 1200 1  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347    C_ wss 3131   Tr wtr 4103    _E cep 4289    Fr wfr 4330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-eprel 4291  df-frfor 4333  df-frind 4334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator