ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz7.2 Unicode version

Theorem tz7.2 4401
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent  _E  Fr  A. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 4151 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
2 efrirr 4400 . . . . 5  |-  (  _E  Fr  A  ->  -.  A  e.  A )
3 eleq1 2268 . . . . . 6  |-  ( B  =  A  ->  ( B  e.  A  <->  A  e.  A ) )
43notbid 669 . . . . 5  |-  ( B  =  A  ->  ( -.  B  e.  A  <->  -.  A  e.  A ) )
52, 4syl5ibrcom 157 . . . 4  |-  (  _E  Fr  A  ->  ( B  =  A  ->  -.  B  e.  A ) )
65necon2ad 2433 . . 3  |-  (  _E  Fr  A  ->  ( B  e.  A  ->  B  =/=  A ) )
71, 6anim12ii 343 . 2  |-  ( ( Tr  A  /\  _E  Fr  A )  ->  ( B  e.  A  ->  ( B  C_  A  /\  B  =/=  A ) ) )
873impia 1203 1  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376    C_ wss 3166   Tr wtr 4142    _E cep 4334    Fr wfr 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-tr 4143  df-eprel 4336  df-frfor 4378  df-frind 4379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator