ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz7.2 Unicode version

Theorem tz7.2 4332
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent  _E  Fr  A. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 4089 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
2 efrirr 4331 . . . . 5  |-  (  _E  Fr  A  ->  -.  A  e.  A )
3 eleq1 2229 . . . . . 6  |-  ( B  =  A  ->  ( B  e.  A  <->  A  e.  A ) )
43notbid 657 . . . . 5  |-  ( B  =  A  ->  ( -.  B  e.  A  <->  -.  A  e.  A ) )
52, 4syl5ibrcom 156 . . . 4  |-  (  _E  Fr  A  ->  ( B  =  A  ->  -.  B  e.  A ) )
65necon2ad 2393 . . 3  |-  (  _E  Fr  A  ->  ( B  e.  A  ->  B  =/=  A ) )
71, 6anim12ii 341 . 2  |-  ( ( Tr  A  /\  _E  Fr  A )  ->  ( B  e.  A  ->  ( B  C_  A  /\  B  =/=  A ) ) )
873impia 1190 1  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336    C_ wss 3116   Tr wtr 4080    _E cep 4265    Fr wfr 4306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-eprel 4267  df-frfor 4309  df-frind 4310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator