ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltne Unicode version

Theorem ltne 7975
Description: 'Less than' implies not equal. See also ltap 8523 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
ltne  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )

Proof of Theorem ltne
StepHypRef Expression
1 ltnr 7967 . . . 4  |-  ( A  e.  RR  ->  -.  A  <  A )
2 breq2 3981 . . . . 5  |-  ( B  =  A  ->  ( A  <  B  <->  A  <  A ) )
32notbid 657 . . . 4  |-  ( B  =  A  ->  ( -.  A  <  B  <->  -.  A  <  A ) )
41, 3syl5ibrcom 156 . . 3  |-  ( A  e.  RR  ->  ( B  =  A  ->  -.  A  <  B ) )
54necon2ad 2391 . 2  |-  ( A  e.  RR  ->  ( A  <  B  ->  B  =/=  A ) )
65imp 123 1  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135    =/= wne 2334   class class class wbr 3977   RRcr 7744    < clt 7925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-pre-ltirr 7857
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2724  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-xp 4605  df-pnf 7927  df-mnf 7928  df-ltxr 7930
This theorem is referenced by:  gtneii  7986  ltnei  7994  gtned  8003  gt0ne0  8317  lt0ne0  8318  gt0ne0d  8402  nngt1ne1  8884  zdceq  9258  qdceq  10173  coprm  12065  phibndlem  12137  tridceq  13797
  Copyright terms: Public domain W3C validator