ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltne Unicode version

Theorem ltne 7473
Description: 'Less than' implies not equal. See also ltap 8008 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
ltne  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )

Proof of Theorem ltne
StepHypRef Expression
1 ltnr 7465 . . . 4  |-  ( A  e.  RR  ->  -.  A  <  A )
2 breq2 3815 . . . . 5  |-  ( B  =  A  ->  ( A  <  B  <->  A  <  A ) )
32notbid 625 . . . 4  |-  ( B  =  A  ->  ( -.  A  <  B  <->  -.  A  <  A ) )
41, 3syl5ibrcom 155 . . 3  |-  ( A  e.  RR  ->  ( B  =  A  ->  -.  A  <  B ) )
54necon2ad 2306 . 2  |-  ( A  e.  RR  ->  ( A  <  B  ->  B  =/=  A ) )
65imp 122 1  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434    =/= wne 2249   class class class wbr 3811   RRcr 7252    < clt 7425
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-pre-ltirr 7360
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-xp 4407  df-pnf 7427  df-mnf 7428  df-ltxr 7430
This theorem is referenced by:  gtneii  7483  ltnei  7491  gtned  7500  gt0ne0  7808  lt0ne0  7809  gt0ne0d  7890  nngt1ne1  8350  zdceq  8718  qdceq  9547  coprm  10903  phibndlem  10972
  Copyright terms: Public domain W3C validator