ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0nemnf Unicode version

Theorem ge0nemnf 10016
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0nemnf  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )

Proof of Theorem ge0nemnf
StepHypRef Expression
1 ge0gtmnf 10015 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A )  -> -oo  <  A )
2 ngtmnft 10009 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
32adantr 276 . . . 4  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( A  = -oo  <->  -. -oo  <  A ) )
43biimpd 144 . . 3  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( A  = -oo  ->  -. -oo 
<  A ) )
54necon2ad 2457 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( -oo  <  A  ->  A  =/= -oo ) )
61, 5mpd 13 1  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4082   0cc0 7995   -oocmnf 8175   RR*cxr 8176    < clt 8177    <_ cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-po 4386  df-iso 4387  df-xp 4724  df-cnv 4726  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  xlesubadd  10075  xrbdtri  11782  isxmet2d  15016  xmetrtri  15044  xblpnfps  15066  xblpnf  15067  xblss2ps  15072  xblss2  15073
  Copyright terms: Public domain W3C validator