ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0nemnf Unicode version

Theorem ge0nemnf 9774
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0nemnf  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )

Proof of Theorem ge0nemnf
StepHypRef Expression
1 ge0gtmnf 9773 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A )  -> -oo  <  A )
2 ngtmnft 9767 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
32adantr 274 . . . 4  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( A  = -oo  <->  -. -oo  <  A ) )
43biimpd 143 . . 3  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( A  = -oo  ->  -. -oo 
<  A ) )
54necon2ad 2397 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( -oo  <  A  ->  A  =/= -oo ) )
61, 5mpd 13 1  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3987   0cc0 7767   -oocmnf 7945   RR*cxr 7946    < clt 7947    <_ cle 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1re 7861  ax-addrcl 7864  ax-rnegex 7876  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-po 4279  df-iso 4280  df-xp 4615  df-cnv 4617  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953
This theorem is referenced by:  xlesubadd  9833  xrbdtri  11232  isxmet2d  13107  xmetrtri  13135  xblpnfps  13157  xblpnf  13158  xblss2ps  13163  xblss2  13164
  Copyright terms: Public domain W3C validator