ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0nemnf Unicode version

Theorem ge0nemnf 9824
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0nemnf  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )

Proof of Theorem ge0nemnf
StepHypRef Expression
1 ge0gtmnf 9823 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A )  -> -oo  <  A )
2 ngtmnft 9817 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
32adantr 276 . . . 4  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( A  = -oo  <->  -. -oo  <  A ) )
43biimpd 144 . . 3  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( A  = -oo  ->  -. -oo 
<  A ) )
54necon2ad 2404 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  ( -oo  <  A  ->  A  =/= -oo ) )
61, 5mpd 13 1  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4004   0cc0 7811   -oocmnf 7990   RR*cxr 7991    < clt 7992    <_ cle 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-po 4297  df-iso 4298  df-xp 4633  df-cnv 4635  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998
This theorem is referenced by:  xlesubadd  9883  xrbdtri  11284  isxmet2d  13851  xmetrtri  13879  xblpnfps  13901  xblpnf  13902  xblss2ps  13907  xblss2  13908
  Copyright terms: Public domain W3C validator