ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nprm Unicode version

Theorem nprm 12122
Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
nprm  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  -.  ( A  x.  B )  e.  Prime )

Proof of Theorem nprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9536 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
21adantr 276 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  A  e.  ZZ )
32zred 9374 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  A  e.  RR )
4 eluz2b2 9602 . . . . . 6  |-  ( B  e.  ( ZZ>= `  2
)  <->  ( B  e.  NN  /\  1  < 
B ) )
54simprbi 275 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
65adantl 277 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  B )
7 eluzelz 9536 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
87adantl 277 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  ZZ )
98zred 9374 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  RR )
10 eluz2nn 9565 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
1110adantr 276 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  A  e.  NN )
1211nngt0d 8962 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  0  <  A )
13 ltmulgt11 8820 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  A )  ->  (
1  <  B  <->  A  <  ( A  x.  B ) ) )
143, 9, 12, 13syl3anc 1238 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( 1  <  B  <->  A  <  ( A  x.  B ) ) )
156, 14mpbid 147 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  A  <  ( A  x.  B ) )
163, 15ltned 8070 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  A  =/=  ( A  x.  B
) )
17 dvdsmul1 11819 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
181, 7, 17syl2an 289 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  A  ||  ( A  x.  B )
)
19 isprm4 12118 . . . . . . 7  |-  ( ( A  x.  B )  e.  Prime  <->  ( ( A  x.  B )  e.  ( ZZ>= `  2 )  /\  A. x  e.  (
ZZ>= `  2 ) ( x  ||  ( A  x.  B )  ->  x  =  ( A  x.  B ) ) ) )
2019simprbi 275 . . . . . 6  |-  ( ( A  x.  B )  e.  Prime  ->  A. x  e.  ( ZZ>= `  2 )
( x  ||  ( A  x.  B )  ->  x  =  ( A  x.  B ) ) )
21 breq1 4006 . . . . . . . 8  |-  ( x  =  A  ->  (
x  ||  ( A  x.  B )  <->  A  ||  ( A  x.  B )
) )
22 eqeq1 2184 . . . . . . . 8  |-  ( x  =  A  ->  (
x  =  ( A  x.  B )  <->  A  =  ( A  x.  B
) ) )
2321, 22imbi12d 234 . . . . . . 7  |-  ( x  =  A  ->  (
( x  ||  ( A  x.  B )  ->  x  =  ( A  x.  B ) )  <-> 
( A  ||  ( A  x.  B )  ->  A  =  ( A  x.  B ) ) ) )
2423rspcv 2837 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A. x  e.  ( ZZ>= ` 
2 ) ( x 
||  ( A  x.  B )  ->  x  =  ( A  x.  B ) )  -> 
( A  ||  ( A  x.  B )  ->  A  =  ( A  x.  B ) ) ) )
2520, 24syl5 32 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A  x.  B )  e.  Prime  ->  ( A  ||  ( A  x.  B
)  ->  A  =  ( A  x.  B
) ) ) )
2625adantr 276 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( A  x.  B )  e.  Prime  ->  ( A  ||  ( A  x.  B
)  ->  A  =  ( A  x.  B
) ) ) )
2718, 26mpid 42 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( A  x.  B )  e.  Prime  ->  A  =  ( A  x.  B
) ) )
2827necon3ad 2389 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  =/=  ( A  x.  B
)  ->  -.  ( A  x.  B )  e.  Prime ) )
2916, 28mpd 13 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  -.  ( A  x.  B )  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   RRcr 7809   0cc0 7810   1c1 7811    x. cmul 7815    < clt 7991   NNcn 8918   2c2 8969   ZZcz 9252   ZZ>=cuz 9527    || cdvds 11793   Primecprime 12106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-1o 6416  df-2o 6417  df-er 6534  df-en 6740  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-dvds 11794  df-prm 12107
This theorem is referenced by:  nprmi  12123  dvdsnprmd  12124  sqnprm  12135
  Copyright terms: Public domain W3C validator