ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprmpw2 Unicode version

Theorem pcprmpw2 12851
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Distinct variable groups:    A, n    P, n

Proof of Theorem pcprmpw2
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN )
21nnnn0d 9418 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN0 )
3 prmnn 12627 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
43ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  NN )
5 pccl 12817 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P  pCnt  A )  e. 
NN0 )
65adantr 276 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  NN0 )
74, 6nnexpcld 10912 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
87nnnn0d 9418 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN0 )
96nn0red 9419 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  RR )
109leidd 8657 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  A ) )
11 simpll 527 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  Prime )
126nn0zd 9563 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  ZZ )
13 pcid 12842 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( P  pCnt  A )  e.  ZZ )  ->  ( P  pCnt  ( P ^
( P  pCnt  A
) ) )  =  ( P  pCnt  A
) )
1411, 12, 13syl2anc 411 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  A ) )
1510, 14breqtrrd 4110 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
1615ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
17 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  p  =  P )
1817oveq1d 6015 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  =  ( P  pCnt  A )
)
1917oveq1d 6015 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  ( P ^
( P  pCnt  A
) ) ) )
2016, 18, 193brtr4d 4114 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
21 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  ||  ( P ^ n ) )
22 prmz 12628 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
2322adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e.  ZZ )
241adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  NN )
2524nnzd 9564 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  ZZ )
26 simprl 529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  n  e.  NN0 )
274, 26nnexpcld 10912 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ n )  e.  NN )
2827adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  NN )
2928nnzd 9564 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  ZZ )
30 dvdstr 12334 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  A  e.  ZZ  /\  ( P ^ n )  e.  ZZ )  ->  (
( p  ||  A  /\  A  ||  ( P ^ n ) )  ->  p  ||  ( P ^ n ) ) )
3123, 25, 29, 30syl3anc 1271 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( ( p  ||  A  /\  A  ||  ( P ^
n ) )  ->  p  ||  ( P ^
n ) ) )
3221, 31mpan2d 428 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  ||  ( P ^ n
) ) )
33 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e. 
Prime )
3411adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  P  e. 
Prime )
35 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  n  e. 
NN0 )
36 prmdvdsexpr 12667 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  P  e.  Prime  /\  n  e.  NN0 )  ->  ( p  ||  ( P ^ n
)  ->  p  =  P ) )
3733, 34, 35, 36syl3anc 1271 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  ( P ^
n )  ->  p  =  P ) )
3832, 37syld 45 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  =  P ) )
3938necon3ad 2442 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p  =/=  P  ->  -.  p  ||  A ) )
4039imp 124 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  -.  p  ||  A )
41 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  p  e.  Prime )
421ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  A  e.  NN )
43 pceq0 12840 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p  pCnt  A
)  =  0  <->  -.  p  ||  A ) )
4441, 42, 43syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( (
p  pCnt  A )  =  0  <->  -.  p  ||  A ) )
4540, 44mpbird 167 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  =  0 )
467ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
4741, 46pccld 12818 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  e.  NN0 )
4847nn0ge0d 9421 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  0  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
4945, 48eqbrtrd 4104 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
50 prmz 12628 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
5150adantr 276 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  P  e.  ZZ )
5251ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  P  e.  ZZ )
53 zdceq 9518 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  P  e.  ZZ )  -> DECID  p  =  P )
5423, 52, 53syl2anc 411 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  -> DECID  p  =  P
)
55 dcne 2411 . . . . . . . 8  |-  (DECID  p  =  P  <->  ( p  =  P  \/  p  =/= 
P ) )
5654, 55sylib 122 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p  =  P  \/  p  =/=  P ) )
5720, 49, 56mpjaodan 803 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
5857ralrimiva 2603 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
591nnzd 9564 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  ZZ )
607nnzd 9564 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
61 pc2dvds 12848 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( P ^ ( P 
pCnt  A ) )  e.  ZZ )  ->  ( A  ||  ( P ^
( P  pCnt  A
) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
6259, 60, 61syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( A  ||  ( P ^ ( P  pCnt  A ) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
6358, 62mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  ||  ( P ^ ( P  pCnt  A ) ) )
64 pcdvds 12833 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
6564adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
66 dvdseq 12354 . . . 4  |-  ( ( ( A  e.  NN0  /\  ( P ^ ( P  pCnt  A ) )  e.  NN0 )  /\  ( A  ||  ( P ^ ( P  pCnt  A ) )  /\  ( P ^ ( P  pCnt  A ) )  ||  A
) )  ->  A  =  ( P ^
( P  pCnt  A
) ) )
672, 8, 63, 65, 66syl22anc 1272 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  =  ( P ^ ( P 
pCnt  A ) ) )
6867rexlimdvaa 2649 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  ->  A  =  ( P ^
( P  pCnt  A
) ) ) )
693adantr 276 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  P  e.  NN )
7069, 5nnexpcld 10912 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
7170nnzd 9564 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
72 iddvds 12310 . . . . 5  |-  ( ( P ^ ( P 
pCnt  A ) )  e.  ZZ  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
7371, 72syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
74 oveq2 6008 . . . . . 6  |-  ( n  =  ( P  pCnt  A )  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  A ) ) )
7574breq2d 4094 . . . . 5  |-  ( n  =  ( P  pCnt  A )  ->  ( ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) ) )
7675rspcev 2907 . . . 4  |-  ( ( ( P  pCnt  A
)  e.  NN0  /\  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ ( P 
pCnt  A ) ) )  ->  E. n  e.  NN0  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ n ) )
775, 73, 76syl2anc 411 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) )
78 breq1 4085 . . . 4  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( A  ||  ( P ^
n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n ) ) )
7978rexbidv 2531 . . 3  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) ) )
8077, 79syl5ibrcom 157 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( A  =  ( P ^ ( P  pCnt  A ) )  ->  E. n  e.  NN0  A  ||  ( P ^ n ) ) )
8168, 80impbid 129 1  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   0cc0 7995    <_ cle 8178   NNcn 9106   NN0cn0 9365   ZZcz 9442   ^cexp 10755    || cdvds 12293   Primecprime 12624    pCnt cpc 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-xnn0 9429  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625  df-pc 12803
This theorem is referenced by:  pcprmpw  12852  dvdsprmpweq  12853  dvdsppwf1o  15657
  Copyright terms: Public domain W3C validator