ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprmpw2 Unicode version

Theorem pcprmpw2 12529
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Distinct variable groups:    A, n    P, n

Proof of Theorem pcprmpw2
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN )
21nnnn0d 9321 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN0 )
3 prmnn 12305 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
43ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  NN )
5 pccl 12495 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P  pCnt  A )  e. 
NN0 )
65adantr 276 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  NN0 )
74, 6nnexpcld 10806 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
87nnnn0d 9321 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN0 )
96nn0red 9322 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  RR )
109leidd 8560 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  A ) )
11 simpll 527 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  Prime )
126nn0zd 9465 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  ZZ )
13 pcid 12520 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( P  pCnt  A )  e.  ZZ )  ->  ( P  pCnt  ( P ^
( P  pCnt  A
) ) )  =  ( P  pCnt  A
) )
1411, 12, 13syl2anc 411 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  A ) )
1510, 14breqtrrd 4062 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
1615ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
17 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  p  =  P )
1817oveq1d 5940 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  =  ( P  pCnt  A )
)
1917oveq1d 5940 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  ( P ^
( P  pCnt  A
) ) ) )
2016, 18, 193brtr4d 4066 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
21 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  ||  ( P ^ n ) )
22 prmz 12306 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
2322adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e.  ZZ )
241adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  NN )
2524nnzd 9466 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  ZZ )
26 simprl 529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  n  e.  NN0 )
274, 26nnexpcld 10806 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ n )  e.  NN )
2827adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  NN )
2928nnzd 9466 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  ZZ )
30 dvdstr 12012 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  A  e.  ZZ  /\  ( P ^ n )  e.  ZZ )  ->  (
( p  ||  A  /\  A  ||  ( P ^ n ) )  ->  p  ||  ( P ^ n ) ) )
3123, 25, 29, 30syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( ( p  ||  A  /\  A  ||  ( P ^
n ) )  ->  p  ||  ( P ^
n ) ) )
3221, 31mpan2d 428 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  ||  ( P ^ n
) ) )
33 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e. 
Prime )
3411adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  P  e. 
Prime )
35 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  n  e. 
NN0 )
36 prmdvdsexpr 12345 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  P  e.  Prime  /\  n  e.  NN0 )  ->  ( p  ||  ( P ^ n
)  ->  p  =  P ) )
3733, 34, 35, 36syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  ( P ^
n )  ->  p  =  P ) )
3832, 37syld 45 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  =  P ) )
3938necon3ad 2409 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p  =/=  P  ->  -.  p  ||  A ) )
4039imp 124 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  -.  p  ||  A )
41 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  p  e.  Prime )
421ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  A  e.  NN )
43 pceq0 12518 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p  pCnt  A
)  =  0  <->  -.  p  ||  A ) )
4441, 42, 43syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( (
p  pCnt  A )  =  0  <->  -.  p  ||  A ) )
4540, 44mpbird 167 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  =  0 )
467ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
4741, 46pccld 12496 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  e.  NN0 )
4847nn0ge0d 9324 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  0  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
4945, 48eqbrtrd 4056 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
50 prmz 12306 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
5150adantr 276 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  P  e.  ZZ )
5251ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  P  e.  ZZ )
53 zdceq 9420 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  P  e.  ZZ )  -> DECID  p  =  P )
5423, 52, 53syl2anc 411 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  -> DECID  p  =  P
)
55 dcne 2378 . . . . . . . 8  |-  (DECID  p  =  P  <->  ( p  =  P  \/  p  =/= 
P ) )
5654, 55sylib 122 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p  =  P  \/  p  =/=  P ) )
5720, 49, 56mpjaodan 799 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
5857ralrimiva 2570 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
591nnzd 9466 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  ZZ )
607nnzd 9466 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
61 pc2dvds 12526 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( P ^ ( P 
pCnt  A ) )  e.  ZZ )  ->  ( A  ||  ( P ^
( P  pCnt  A
) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
6259, 60, 61syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( A  ||  ( P ^ ( P  pCnt  A ) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
6358, 62mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  ||  ( P ^ ( P  pCnt  A ) ) )
64 pcdvds 12511 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
6564adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
66 dvdseq 12032 . . . 4  |-  ( ( ( A  e.  NN0  /\  ( P ^ ( P  pCnt  A ) )  e.  NN0 )  /\  ( A  ||  ( P ^ ( P  pCnt  A ) )  /\  ( P ^ ( P  pCnt  A ) )  ||  A
) )  ->  A  =  ( P ^
( P  pCnt  A
) ) )
672, 8, 63, 65, 66syl22anc 1250 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  =  ( P ^ ( P 
pCnt  A ) ) )
6867rexlimdvaa 2615 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  ->  A  =  ( P ^
( P  pCnt  A
) ) ) )
693adantr 276 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  P  e.  NN )
7069, 5nnexpcld 10806 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
7170nnzd 9466 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
72 iddvds 11988 . . . . 5  |-  ( ( P ^ ( P 
pCnt  A ) )  e.  ZZ  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
7371, 72syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
74 oveq2 5933 . . . . . 6  |-  ( n  =  ( P  pCnt  A )  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  A ) ) )
7574breq2d 4046 . . . . 5  |-  ( n  =  ( P  pCnt  A )  ->  ( ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) ) )
7675rspcev 2868 . . . 4  |-  ( ( ( P  pCnt  A
)  e.  NN0  /\  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ ( P 
pCnt  A ) ) )  ->  E. n  e.  NN0  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ n ) )
775, 73, 76syl2anc 411 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) )
78 breq1 4037 . . . 4  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( A  ||  ( P ^
n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n ) ) )
7978rexbidv 2498 . . 3  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) ) )
8077, 79syl5ibrcom 157 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( A  =  ( P ^ ( P  pCnt  A ) )  ->  E. n  e.  NN0  A  ||  ( P ^ n ) ) )
8168, 80impbid 129 1  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476   class class class wbr 4034  (class class class)co 5925   0cc0 7898    <_ cle 8081   NNcn 9009   NN0cn0 9268   ZZcz 9345   ^cexp 10649    || cdvds 11971   Primecprime 12302    pCnt cpc 12480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-xnn0 9332  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-pc 12481
This theorem is referenced by:  pcprmpw  12530  dvdsprmpweq  12531  dvdsppwf1o  15333
  Copyright terms: Public domain W3C validator