ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt Unicode version

Theorem pcmpt 12282
Description: Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmpt.4  |-  ( ph  ->  P  e.  Prime )
pcmpt.5  |-  ( n  =  P  ->  A  =  B )
Assertion
Ref Expression
pcmpt  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
Distinct variable groups:    B, n    P, n
Allowed substitution hints:    ph( n)    A( n)    F( n)    N( n)

Proof of Theorem pcmpt
Dummy variables  k  p  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.3 . 2  |-  ( ph  ->  N  e.  NN )
2 fveq2 5494 . . . . . 6  |-  ( p  =  1  ->  (  seq 1 (  x.  ,  F ) `  p
)  =  (  seq 1 (  x.  ,  F ) `  1
) )
32oveq2d 5866 . . . . 5  |-  ( p  =  1  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  1 )
) )
4 breq2 3991 . . . . . 6  |-  ( p  =  1  ->  ( P  <_  p  <->  P  <_  1 ) )
54ifbid 3546 . . . . 5  |-  ( p  =  1  ->  if ( P  <_  p ,  B ,  0 )  =  if ( P  <_  1 ,  B ,  0 ) )
63, 5eqeq12d 2185 . . . 4  |-  ( p  =  1  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  p
) )  =  if ( P  <_  p ,  B ,  0 )  <-> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  1
) )  =  if ( P  <_  1 ,  B ,  0 ) ) )
76imbi2d 229 . . 3  |-  ( p  =  1  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  if ( P  <_  p ,  B ,  0 ) )  <->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  1
) )  =  if ( P  <_  1 ,  B ,  0 ) ) ) )
8 fveq2 5494 . . . . . 6  |-  ( p  =  k  ->  (  seq 1 (  x.  ,  F ) `  p
)  =  (  seq 1 (  x.  ,  F ) `  k
) )
98oveq2d 5866 . . . . 5  |-  ( p  =  k  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  k )
) )
10 breq2 3991 . . . . . 6  |-  ( p  =  k  ->  ( P  <_  p  <->  P  <_  k ) )
1110ifbid 3546 . . . . 5  |-  ( p  =  k  ->  if ( P  <_  p ,  B ,  0 )  =  if ( P  <_  k ,  B ,  0 ) )
129, 11eqeq12d 2185 . . . 4  |-  ( p  =  k  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  p
) )  =  if ( P  <_  p ,  B ,  0 )  <-> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 ) ) )
1312imbi2d 229 . . 3  |-  ( p  =  k  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  if ( P  <_  p ,  B ,  0 ) )  <->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 ) ) ) )
14 fveq2 5494 . . . . . 6  |-  ( p  =  ( k  +  1 )  ->  (  seq 1 (  x.  ,  F ) `  p
)  =  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )
1514oveq2d 5866 . . . . 5  |-  ( p  =  ( k  +  1 )  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) ) )
16 breq2 3991 . . . . . 6  |-  ( p  =  ( k  +  1 )  ->  ( P  <_  p  <->  P  <_  ( k  +  1 ) ) )
1716ifbid 3546 . . . . 5  |-  ( p  =  ( k  +  1 )  ->  if ( P  <_  p ,  B ,  0 )  =  if ( P  <_  ( k  +  1 ) ,  B ,  0 ) )
1815, 17eqeq12d 2185 . . . 4  |-  ( p  =  ( k  +  1 )  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  p
) )  =  if ( P  <_  p ,  B ,  0 )  <-> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  if ( P  <_  (
k  +  1 ) ,  B ,  0 ) ) )
1918imbi2d 229 . . 3  |-  ( p  =  ( k  +  1 )  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  if ( P  <_  p ,  B ,  0 ) )  <->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  if ( P  <_  (
k  +  1 ) ,  B ,  0 ) ) ) )
20 fveq2 5494 . . . . . 6  |-  ( p  =  N  ->  (  seq 1 (  x.  ,  F ) `  p
)  =  (  seq 1 (  x.  ,  F ) `  N
) )
2120oveq2d 5866 . . . . 5  |-  ( p  =  N  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  N )
) )
22 breq2 3991 . . . . . 6  |-  ( p  =  N  ->  ( P  <_  p  <->  P  <_  N ) )
2322ifbid 3546 . . . . 5  |-  ( p  =  N  ->  if ( P  <_  p ,  B ,  0 )  =  if ( P  <_  N ,  B ,  0 ) )
2421, 23eqeq12d 2185 . . . 4  |-  ( p  =  N  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  p
) )  =  if ( P  <_  p ,  B ,  0 )  <-> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) ) )
2524imbi2d 229 . . 3  |-  ( p  =  N  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  if ( P  <_  p ,  B ,  0 ) )  <->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) ) ) )
26 pcmpt.4 . . . . 5  |-  ( ph  ->  P  e.  Prime )
27 pc1 12246 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2826, 27syl 14 . . . 4  |-  ( ph  ->  ( P  pCnt  1
)  =  0 )
29 1zzd 9226 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
30 elnnuz 9510 . . . . . . . 8  |-  ( i  e.  NN  <->  i  e.  ( ZZ>= `  1 )
)
31 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
3231adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  i  e.  NN )
33 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  i  e.  Prime )
34 pcmpt.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
3534ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  A. n  e.  Prime  A  e.  NN0 )
36 nfcsb1v 3082 . . . . . . . . . . . . . . 15  |-  F/_ n [_ i  /  n ]_ A
3736nfel1 2323 . . . . . . . . . . . . . 14  |-  F/ n [_ i  /  n ]_ A  e.  NN0
38 csbeq1a 3058 . . . . . . . . . . . . . . 15  |-  ( n  =  i  ->  A  =  [_ i  /  n ]_ A )
3938eleq1d 2239 . . . . . . . . . . . . . 14  |-  ( n  =  i  ->  ( A  e.  NN0  <->  [_ i  /  n ]_ A  e.  NN0 ) )
4037, 39rspc 2828 . . . . . . . . . . . . 13  |-  ( i  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  [_ i  /  n ]_ A  e.  NN0 ) )
4133, 35, 40sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  [_ i  /  n ]_ A  e. 
NN0 )
4232, 41nnexpcld 10618 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  (
i ^ [_ i  /  n ]_ A )  e.  NN )
43 1nn 8876 . . . . . . . . . . . 12  |-  1  e.  NN
4443a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN )  /\  -.  i  e.  Prime )  -> 
1  e.  NN )
45 prmdc 12071 . . . . . . . . . . . 12  |-  ( i  e.  NN  -> DECID  i  e.  Prime )
4645adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  -> DECID  i  e.  Prime )
4742, 44, 46ifcldadc 3554 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A ) ,  1 )  e.  NN )
48 nfcv 2312 . . . . . . . . . . 11  |-  F/_ n
i
4948nfel1 2323 . . . . . . . . . . . 12  |-  F/ n  i  e.  Prime
50 nfcv 2312 . . . . . . . . . . . . 13  |-  F/_ n ^
5148, 50, 36nfov 5880 . . . . . . . . . . . 12  |-  F/_ n
( i ^ [_ i  /  n ]_ A
)
52 nfcv 2312 . . . . . . . . . . . 12  |-  F/_ n
1
5349, 51, 52nfif 3553 . . . . . . . . . . 11  |-  F/_ n if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A
) ,  1 )
54 eleq1 2233 . . . . . . . . . . . 12  |-  ( n  =  i  ->  (
n  e.  Prime  <->  i  e.  Prime ) )
55 id 19 . . . . . . . . . . . . 13  |-  ( n  =  i  ->  n  =  i )
5655, 38oveq12d 5868 . . . . . . . . . . . 12  |-  ( n  =  i  ->  (
n ^ A )  =  ( i ^ [_ i  /  n ]_ A ) )
5754, 56ifbieq1d 3547 . . . . . . . . . . 11  |-  ( n  =  i  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A ) ,  1 ) )
58 pcmpt.1 . . . . . . . . . . 11  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
5948, 53, 57, 58fvmptf 5586 . . . . . . . . . 10  |-  ( ( i  e.  NN  /\  if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A
) ,  1 )  e.  NN )  -> 
( F `  i
)  =  if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A ) ,  1 ) )
6031, 47, 59syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  =  if ( i  e. 
Prime ,  ( i ^ [_ i  /  n ]_ A ) ,  1 ) )
6160, 47eqeltrd 2247 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  NN )
6230, 61sylan2br 286 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ZZ>= `  1 )
)  ->  ( F `  i )  e.  NN )
63 nnmulcl 8886 . . . . . . . 8  |-  ( ( i  e.  NN  /\  j  e.  NN )  ->  ( i  x.  j
)  e.  NN )
6463adantl 275 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  NN  /\  j  e.  NN ) )  -> 
( i  x.  j
)  e.  NN )
6529, 62, 64seq3-1 10403 . . . . . 6  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 1 )  =  ( F `  1
) )
66 1nprm 12055 . . . . . . . . . 10  |-  -.  1  e.  Prime
67 eleq1 2233 . . . . . . . . . 10  |-  ( n  =  1  ->  (
n  e.  Prime  <->  1  e.  Prime ) )
6866, 67mtbiri 670 . . . . . . . . 9  |-  ( n  =  1  ->  -.  n  e.  Prime )
6968iffalsed 3535 . . . . . . . 8  |-  ( n  =  1  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  1 )
70 1ex 7902 . . . . . . . 8  |-  1  e.  _V
7169, 58, 70fvmpt 5571 . . . . . . 7  |-  ( 1  e.  NN  ->  ( F `  1 )  =  1 )
7243, 71ax-mp 5 . . . . . 6  |-  ( F `
 1 )  =  1
7365, 72eqtrdi 2219 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 1 )  =  1 )
7473oveq2d 5866 . . . 4  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  1
) )  =  ( P  pCnt  1 ) )
75 prmgt1 12073 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
76 1z 9225 . . . . . . . 8  |-  1  e.  ZZ
77 prmz 12052 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
78 zltnle 9245 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <  P  <->  -.  P  <_  1 ) )
7976, 77, 78sylancr 412 . . . . . . 7  |-  ( P  e.  Prime  ->  ( 1  <  P  <->  -.  P  <_  1 ) )
8075, 79mpbid 146 . . . . . 6  |-  ( P  e.  Prime  ->  -.  P  <_  1 )
8180iffalsed 3535 . . . . 5  |-  ( P  e.  Prime  ->  if ( P  <_  1 ,  B ,  0 )  =  0 )
8226, 81syl 14 . . . 4  |-  ( ph  ->  if ( P  <_ 
1 ,  B , 
0 )  =  0 )
8328, 74, 823eqtr4d 2213 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  1
) )  =  if ( P  <_  1 ,  B ,  0 ) )
8426adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  P  e.  Prime )
8558, 34pcmptcl 12281 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
8685simpld 111 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : NN --> NN )
87 peano2nn 8877 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
88 ffvelrn 5626 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> NN  /\  ( k  +  1 )  e.  NN )  ->  ( F `  ( k  +  1 ) )  e.  NN )
8986, 87, 88syl2an 287 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  NN )
9089adantrr 476 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( F `  (
k  +  1 ) )  e.  NN )
9184, 90pccld 12241 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  ( F `  ( k  +  1 ) ) )  e.  NN0 )
9291nn0cnd 9177 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  ( F `  ( k  +  1 ) ) )  e.  CC )
9392addid2d 8056 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( 0  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )
9487ad2antrl 487 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( k  +  1 )  e.  NN )
9587ad2antlr 486 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  (
k  +  1 )  e.  NN )
96 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  (
k  +  1 )  e.  Prime )
9734ad2antrr 485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  A. n  e.  Prime  A  e.  NN0 )
98 nfcsb1v 3082 . . . . . . . . . . . . . . . . . . 19  |-  F/_ n [_ ( k  +  1 )  /  n ]_ A
9998nfel1 2323 . . . . . . . . . . . . . . . . . 18  |-  F/ n [_ ( k  +  1 )  /  n ]_ A  e.  NN0
100 csbeq1a 3058 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( k  +  1 )  ->  A  =  [_ ( k  +  1 )  /  n ]_ A )
101100eleq1d 2239 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( k  +  1 )  ->  ( A  e.  NN0  <->  [_ ( k  +  1 )  /  n ]_ A  e.  NN0 ) )
10299, 101rspc 2828 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  [_ ( k  +  1 )  /  n ]_ A  e.  NN0 ) )
10396, 97, 102sylc 62 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  [_ (
k  +  1 )  /  n ]_ A  e.  NN0 )
10495, 103nnexpcld 10618 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  (
( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
)  e.  NN )
10543a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( k  +  1 )  e.  Prime )  ->  1  e.  NN )
10687adantl 275 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
107 prmdc 12071 . . . . . . . . . . . . . . . 16  |-  ( ( k  +  1 )  e.  NN  -> DECID  ( k  +  1 )  e.  Prime )
108106, 107syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  -> DECID  ( k  +  1 )  e.  Prime )
109104, 105, 108ifcldadc 3554 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ,  1 )  e.  NN )
110109adantrr 476 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  e.  NN )
111 nfcv 2312 . . . . . . . . . . . . . 14  |-  F/_ n
( k  +  1 )
112 nfv 1521 . . . . . . . . . . . . . . 15  |-  F/ n
( k  +  1 )  e.  Prime
113111, 50, 98nfov 5880 . . . . . . . . . . . . . . 15  |-  F/_ n
( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A )
114112, 113, 52nfif 3553 . . . . . . . . . . . . . 14  |-  F/_ n if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )
115 eleq1 2233 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  (
n  e.  Prime  <->  ( k  +  1 )  e. 
Prime ) )
116 id 19 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( k  +  1 )  ->  n  =  ( k  +  1 ) )
117116, 100oveq12d 5868 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  (
n ^ A )  =  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
118115, 117ifbieq1d 3547 . . . . . . . . . . . . . 14  |-  ( n  =  ( k  +  1 )  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 ) )
119111, 114, 118, 58fvmptf 5586 . . . . . . . . . . . . 13  |-  ( ( ( k  +  1 )  e.  NN  /\  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  e.  NN )  ->  ( F `  ( k  +  1 ) )  =  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 ) )
12094, 110, 119syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( F `  (
k  +  1 ) )  =  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ,  1 ) )
121 simprr 527 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( k  +  1 )  =  P )
122121, 84eqeltrd 2247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( k  +  1 )  e.  Prime )
123122iftrued 3532 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  =  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
124121csbeq1d 3056 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  [_ ( k  +  1 )  /  n ]_ A  =  [_ P  /  n ]_ A )
125 nfcvd 2313 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Prime  ->  F/_ n B )
126 pcmpt.5 . . . . . . . . . . . . . . . 16  |-  ( n  =  P  ->  A  =  B )
127125, 126csbiegf 3092 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  [_ P  /  n ]_ A  =  B )
12884, 127syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  [_ P  /  n ]_ A  =  B
)
129124, 128eqtrd 2203 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  [_ ( k  +  1 )  /  n ]_ A  =  B )
130121, 129oveq12d 5868 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A )  =  ( P ^ B ) )
131120, 123, 1303eqtrd 2207 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( F `  (
k  +  1 ) )  =  ( P ^ B ) )
132131oveq2d 5866 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  ( F `  ( k  +  1 ) ) )  =  ( P 
pCnt  ( P ^ B ) ) )
133126eleq1d 2239 . . . . . . . . . . . . . 14  |-  ( n  =  P  ->  ( A  e.  NN0  <->  B  e.  NN0 ) )
134133rspcv 2830 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  B  e.  NN0 ) )
13526, 34, 134sylc 62 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  NN0 )
136135adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  B  e.  NN0 )
137 pcidlem 12263 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  B  e.  NN0 )  ->  ( P  pCnt  ( P ^ B ) )  =  B )
13826, 136, 137syl2an2r 590 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  ( P ^ B ) )  =  B )
13993, 132, 1383eqtrd 2207 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( 0  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  B )
140 oveq1 5857 . . . . . . . . . 10  |-  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  0  ->  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  +  ( P 
pCnt  ( F `  ( k  +  1 ) ) ) )  =  ( 0  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
141140eqeq1d 2179 . . . . . . . . 9  |-  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  0  ->  ( ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  B  <->  ( 0  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  B ) )
142139, 141syl5ibrcom 156 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  =  0  ->  ( ( P  pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  +  ( P 
pCnt  ( F `  ( k  +  1 ) ) ) )  =  B ) )
143 nnre 8872 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  RR )
144143ltp1d 8833 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  <  ( k  +  1 ) )
145 nnz 9218 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  ZZ )
14687nnzd 9320 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  ZZ )
147 zltnle 9245 . . . . . . . . . . . . . 14  |-  ( ( k  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( k  < 
( k  +  1 )  <->  -.  ( k  +  1 )  <_ 
k ) )
148145, 146, 147syl2anc 409 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  <  ( k  +  1 )  <->  -.  (
k  +  1 )  <_  k ) )
149144, 148mpbid 146 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  -.  ( k  +  1 )  <_  k )
150149ad2antrl 487 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  -.  ( k  +  1 )  <_  k )
151121breq1d 3997 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( k  +  1 )  <_  k  <->  P  <_  k ) )
152150, 151mtbid 667 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  -.  P  <_  k )
153152iffalsed 3535 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  if ( P  <_  k ,  B ,  0 )  =  0 )
154153eqeq2d 2182 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  =  if ( P  <_ 
k ,  B , 
0 )  <->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `
 k ) )  =  0 ) )
155 simpr 109 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
156 nnuz 9509 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
157155, 156eleqtrdi 2263 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
15862adantlr 474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  i  e.  ( ZZ>= `  1 )
)  ->  ( F `  i )  e.  NN )
15963adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
i  e.  NN  /\  j  e.  NN )
)  ->  ( i  x.  j )  e.  NN )
160157, 158, 159seq3p1 10405 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) )  =  ( (  seq 1 (  x.  ,  F ) `  k )  x.  ( F `  ( k  +  1 ) ) ) )
161160oveq2d 5866 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) )  =  ( P 
pCnt  ( (  seq 1 (  x.  ,  F ) `  k
)  x.  ( F `
 ( k  +  1 ) ) ) ) )
16226adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  P  e. 
Prime )
16385simprd 113 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
164163ffvelrnda 5628 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `  k
)  e.  NN )
165 nnz 9218 . . . . . . . . . . . . . 14  |-  ( (  seq 1 (  x.  ,  F ) `  k )  e.  NN  ->  (  seq 1 (  x.  ,  F ) `
 k )  e.  ZZ )
166 nnne0 8893 . . . . . . . . . . . . . 14  |-  ( (  seq 1 (  x.  ,  F ) `  k )  e.  NN  ->  (  seq 1 (  x.  ,  F ) `
 k )  =/=  0 )
167165, 166jca 304 . . . . . . . . . . . . 13  |-  ( (  seq 1 (  x.  ,  F ) `  k )  e.  NN  ->  ( (  seq 1
(  x.  ,  F
) `  k )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  k
)  =/=  0 ) )
168164, 167syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( (  seq 1 (  x.  ,  F ) `  k )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 k )  =/=  0 ) )
169 nnz 9218 . . . . . . . . . . . . . 14  |-  ( ( F `  ( k  +  1 ) )  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
170 nnne0 8893 . . . . . . . . . . . . . 14  |-  ( ( F `  ( k  +  1 ) )  e.  NN  ->  ( F `  ( k  +  1 ) )  =/=  0 )
171169, 170jca 304 . . . . . . . . . . . . 13  |-  ( ( F `  ( k  +  1 ) )  e.  NN  ->  (
( F `  (
k  +  1 ) )  e.  ZZ  /\  ( F `  ( k  +  1 ) )  =/=  0 ) )
17289, 171syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( k  +  1 ) )  e.  ZZ  /\  ( F `  ( k  +  1 ) )  =/=  0 ) )
173 pcmul 12242 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
(  seq 1 (  x.  ,  F ) `  k )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 k )  =/=  0 )  /\  (
( F `  (
k  +  1 ) )  e.  ZZ  /\  ( F `  ( k  +  1 ) )  =/=  0 ) )  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `
 k )  x.  ( F `  (
k  +  1 ) ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
174162, 168, 172, 173syl3anc 1233 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( P 
pCnt  ( (  seq 1 (  x.  ,  F ) `  k
)  x.  ( F `
 ( k  +  1 ) ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
175161, 174eqtrd 2203 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
176175adantrr 476 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
177 prmnn 12051 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
17826, 177syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
179178nnred 8878 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  RR )
180179adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  P  e.  RR )
181180leidd 8420 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  P  <_  P )
182181, 121breqtrrd 4015 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  P  <_  ( k  +  1 ) )
183182iftrued 3532 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  if ( P  <_  (
k  +  1 ) ,  B ,  0 )  =  B )
184176, 183eqeq12d 2185 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 )  <->  ( ( P  pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  +  ( P 
pCnt  ( F `  ( k  +  1 ) ) ) )  =  B ) )
185142, 154, 1843imtr4d 202 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  =  if ( P  <_ 
k ,  B , 
0 )  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) )  =  if ( P  <_  ( k  +  1 ) ,  B ,  0 ) ) )
186185expr 373 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  =  P  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 )  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 ) ) ) )
187175adantrr 476 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
188 simplrr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( k  +  1 )  =/= 
P )
189188necomd 2426 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  P  =/=  ( k  +  1 ) )
19026ad2antrr 485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  P  e. 
Prime )
191 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( k  +  1 )  e. 
Prime )
19234ad2antrr 485 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  A. n  e.  Prime  A  e.  NN0 )
193191, 192, 102sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  [_ (
k  +  1 )  /  n ]_ A  e.  NN0 )
194 prmdvdsexpr 12091 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  (
k  +  1 )  e.  Prime  /\  [_ (
k  +  1 )  /  n ]_ A  e.  NN0 )  ->  ( P  ||  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A )  ->  P  =  ( k  +  1 ) ) )
195190, 191, 193, 194syl3anc 1233 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( P 
||  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A )  ->  P  =  ( k  +  1 ) ) )
196195necon3ad 2382 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( P  =/=  ( k  +  1 )  ->  -.  P  ||  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ) )
197189, 196mpd 13 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  -.  P  ||  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
19887ad2antrl 487 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( k  +  1 )  e.  NN )
199109adantrr 476 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  e.  NN )
200198, 199, 119syl2anc 409 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( F `  (
k  +  1 ) )  =  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ,  1 ) )
201 iftrue 3530 . . . . . . . . . . . . . . . 16  |-  ( ( k  +  1 )  e.  Prime  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ,  1 )  =  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
202200, 201sylan9eq 2223 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( F `
 ( k  +  1 ) )  =  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
203202breq2d 3999 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( P 
||  ( F `  ( k  +  1 ) )  <->  P  ||  (
( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ) )
204197, 203mtbird 668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  -.  P  ||  ( F `  (
k  +  1 ) ) )
20586, 198, 88syl2an2r 590 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( F `  (
k  +  1 ) )  e.  NN )
206205adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( F `
 ( k  +  1 ) )  e.  NN )
207 pceq0 12262 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  ( F `  ( k  +  1 ) )  e.  NN )  -> 
( ( P  pCnt  ( F `  ( k  +  1 ) ) )  =  0  <->  -.  P  ||  ( F `  ( k  +  1 ) ) ) )
208190, 206, 207syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( ( P  pCnt  ( F `  ( k  +  1 ) ) )  =  0  <->  -.  P  ||  ( F `  ( k  +  1 ) ) ) )
209204, 208mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( P 
pCnt  ( F `  ( k  +  1 ) ) )  =  0 )
210 iffalse 3533 . . . . . . . . . . . . . . 15  |-  ( -.  ( k  +  1 )  e.  Prime  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  =  1 )
211200, 210sylan9eq 2223 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  -.  (
k  +  1 )  e.  Prime )  ->  ( F `  ( k  +  1 ) )  =  1 )
212211oveq2d 5866 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  -.  (
k  +  1 )  e.  Prime )  ->  ( P  pCnt  ( F `  ( k  +  1 ) ) )  =  ( P  pCnt  1
) )
21328ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  -.  (
k  +  1 )  e.  Prime )  ->  ( P  pCnt  1 )  =  0 )
214212, 213eqtrd 2203 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  -.  (
k  +  1 )  e.  Prime )  ->  ( P  pCnt  ( F `  ( k  +  1 ) ) )  =  0 )
215 exmiddc 831 . . . . . . . . . . . . 13  |-  (DECID  ( k  +  1 )  e. 
Prime  ->  ( ( k  +  1 )  e. 
Prime  \/  -.  ( k  +  1 )  e. 
Prime ) )
216198, 107, 2153syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( k  +  1 )  e.  Prime  \/ 
-.  ( k  +  1 )  e.  Prime ) )
217209, 214, 216mpjaodan 793 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  ( F `  ( k  +  1 ) ) )  =  0 )
218217oveq2d 5866 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  0 ) )
21926adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  ->  P  e.  Prime )
220164adantrr 476 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
(  seq 1 (  x.  ,  F ) `  k )  e.  NN )
221219, 220pccld 12241 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  e.  NN0 )
222221nn0cnd 9177 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  e.  CC )
223222addid1d 8055 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  +  0 )  =  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) ) )
224187, 218, 2233eqtrd 2207 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) ) )
225219, 77syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  ->  P  e.  ZZ )
226146ad2antrl 487 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( k  +  1 )  e.  ZZ )
227 zltlen 9277 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( P  < 
( k  +  1 )  <->  ( P  <_ 
( k  +  1 )  /\  ( k  +  1 )  =/= 
P ) ) )
228225, 226, 227syl2anc 409 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  <  (
k  +  1 )  <-> 
( P  <_  (
k  +  1 )  /\  ( k  +  1 )  =/=  P
) ) )
229 simprl 526 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
k  e.  NN )
230 nnleltp1 9258 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  k  e.  NN )  ->  ( P  <_  k  <->  P  <  ( k  +  1 ) ) )
231178, 229, 230syl2an2r 590 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  <_  k  <->  P  <  ( k  +  1 ) ) )
232 simprr 527 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( k  +  1 )  =/=  P )
233232biantrud 302 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  <_  (
k  +  1 )  <-> 
( P  <_  (
k  +  1 )  /\  ( k  +  1 )  =/=  P
) ) )
234228, 231, 2333bitr4rd 220 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  <_  (
k  +  1 )  <-> 
P  <_  k )
)
235234ifbid 3546 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  ->  if ( P  <_  (
k  +  1 ) ,  B ,  0 )  =  if ( P  <_  k ,  B ,  0 ) )
236224, 235eqeq12d 2185 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 )  <->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `
 k ) )  =  if ( P  <_  k ,  B ,  0 ) ) )
237236biimprd 157 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  =  if ( P  <_ 
k ,  B , 
0 )  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) )  =  if ( P  <_  ( k  +  1 ) ,  B ,  0 ) ) )
238237expr 373 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  =/=  P  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 )  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 ) ) ) )
239106nnzd 9320 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  ZZ )
240162, 77syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  P  e.  ZZ )
241 zdceq 9274 . . . . . . . 8  |-  ( ( ( k  +  1 )  e.  ZZ  /\  P  e.  ZZ )  -> DECID  ( k  +  1 )  =  P )
242239, 240, 241syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  -> DECID  ( k  +  1 )  =  P )
243 dcne 2351 . . . . . . 7  |-  (DECID  ( k  +  1 )  =  P  <->  ( ( k  +  1 )  =  P  \/  ( k  +  1 )  =/= 
P ) )
244242, 243sylib 121 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  =  P  \/  (
k  +  1 )  =/=  P ) )
245186, 238, 244mpjaod 713 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 )  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 ) ) )
246245expcom 115 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  =  if ( P  <_  k ,  B ,  0 )  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 ) ) ) )
247246a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  =  if ( P  <_  k ,  B ,  0 ) )  ->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  if ( P  <_  (
k  +  1 ) ,  B ,  0 ) ) ) )
2487, 13, 19, 25, 83, 247nnind 8881 . 2  |-  ( N  e.  NN  ->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N ) )  =  if ( P  <_  N ,  B , 
0 ) ) )
2491, 248mpcom 36 1  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   [_csb 3049   ifcif 3525   class class class wbr 3987    |-> cmpt 4048   -->wf 5192   ` cfv 5196  (class class class)co 5850   RRcr 7760   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766    < clt 7941    <_ cle 7942   NNcn 8865   NN0cn0 9122   ZZcz 9199   ZZ>=cuz 9474    seqcseq 10388   ^cexp 10462    || cdvds 11736   Primecprime 12048    pCnt cpc 12225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-1o 6392  df-2o 6393  df-er 6509  df-en 6715  df-fin 6717  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-fl 10213  df-mod 10266  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-dvds 11737  df-gcd 11885  df-prm 12049  df-pc 12226
This theorem is referenced by:  pcmpt2  12283  pcprod  12285  1arithlem4  12305
  Copyright terms: Public domain W3C validator