ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt Unicode version

Theorem pcmpt 12324
Description: Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmpt.4  |-  ( ph  ->  P  e.  Prime )
pcmpt.5  |-  ( n  =  P  ->  A  =  B )
Assertion
Ref Expression
pcmpt  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
Distinct variable groups:    B, n    P, n
Allowed substitution hints:    ph( n)    A( n)    F( n)    N( n)

Proof of Theorem pcmpt
Dummy variables  k  p  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.3 . 2  |-  ( ph  ->  N  e.  NN )
2 fveq2 5511 . . . . . 6  |-  ( p  =  1  ->  (  seq 1 (  x.  ,  F ) `  p
)  =  (  seq 1 (  x.  ,  F ) `  1
) )
32oveq2d 5885 . . . . 5  |-  ( p  =  1  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  1 )
) )
4 breq2 4004 . . . . . 6  |-  ( p  =  1  ->  ( P  <_  p  <->  P  <_  1 ) )
54ifbid 3555 . . . . 5  |-  ( p  =  1  ->  if ( P  <_  p ,  B ,  0 )  =  if ( P  <_  1 ,  B ,  0 ) )
63, 5eqeq12d 2192 . . . 4  |-  ( p  =  1  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  p
) )  =  if ( P  <_  p ,  B ,  0 )  <-> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  1
) )  =  if ( P  <_  1 ,  B ,  0 ) ) )
76imbi2d 230 . . 3  |-  ( p  =  1  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  if ( P  <_  p ,  B ,  0 ) )  <->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  1
) )  =  if ( P  <_  1 ,  B ,  0 ) ) ) )
8 fveq2 5511 . . . . . 6  |-  ( p  =  k  ->  (  seq 1 (  x.  ,  F ) `  p
)  =  (  seq 1 (  x.  ,  F ) `  k
) )
98oveq2d 5885 . . . . 5  |-  ( p  =  k  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  k )
) )
10 breq2 4004 . . . . . 6  |-  ( p  =  k  ->  ( P  <_  p  <->  P  <_  k ) )
1110ifbid 3555 . . . . 5  |-  ( p  =  k  ->  if ( P  <_  p ,  B ,  0 )  =  if ( P  <_  k ,  B ,  0 ) )
129, 11eqeq12d 2192 . . . 4  |-  ( p  =  k  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  p
) )  =  if ( P  <_  p ,  B ,  0 )  <-> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 ) ) )
1312imbi2d 230 . . 3  |-  ( p  =  k  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  if ( P  <_  p ,  B ,  0 ) )  <->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 ) ) ) )
14 fveq2 5511 . . . . . 6  |-  ( p  =  ( k  +  1 )  ->  (  seq 1 (  x.  ,  F ) `  p
)  =  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )
1514oveq2d 5885 . . . . 5  |-  ( p  =  ( k  +  1 )  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) ) )
16 breq2 4004 . . . . . 6  |-  ( p  =  ( k  +  1 )  ->  ( P  <_  p  <->  P  <_  ( k  +  1 ) ) )
1716ifbid 3555 . . . . 5  |-  ( p  =  ( k  +  1 )  ->  if ( P  <_  p ,  B ,  0 )  =  if ( P  <_  ( k  +  1 ) ,  B ,  0 ) )
1815, 17eqeq12d 2192 . . . 4  |-  ( p  =  ( k  +  1 )  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  p
) )  =  if ( P  <_  p ,  B ,  0 )  <-> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  if ( P  <_  (
k  +  1 ) ,  B ,  0 ) ) )
1918imbi2d 230 . . 3  |-  ( p  =  ( k  +  1 )  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  if ( P  <_  p ,  B ,  0 ) )  <->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  if ( P  <_  (
k  +  1 ) ,  B ,  0 ) ) ) )
20 fveq2 5511 . . . . . 6  |-  ( p  =  N  ->  (  seq 1 (  x.  ,  F ) `  p
)  =  (  seq 1 (  x.  ,  F ) `  N
) )
2120oveq2d 5885 . . . . 5  |-  ( p  =  N  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  N )
) )
22 breq2 4004 . . . . . 6  |-  ( p  =  N  ->  ( P  <_  p  <->  P  <_  N ) )
2322ifbid 3555 . . . . 5  |-  ( p  =  N  ->  if ( P  <_  p ,  B ,  0 )  =  if ( P  <_  N ,  B ,  0 ) )
2421, 23eqeq12d 2192 . . . 4  |-  ( p  =  N  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  p
) )  =  if ( P  <_  p ,  B ,  0 )  <-> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) ) )
2524imbi2d 230 . . 3  |-  ( p  =  N  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  p )
)  =  if ( P  <_  p ,  B ,  0 ) )  <->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) ) ) )
26 pcmpt.4 . . . . 5  |-  ( ph  ->  P  e.  Prime )
27 pc1 12288 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2826, 27syl 14 . . . 4  |-  ( ph  ->  ( P  pCnt  1
)  =  0 )
29 1zzd 9269 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
30 elnnuz 9553 . . . . . . . 8  |-  ( i  e.  NN  <->  i  e.  ( ZZ>= `  1 )
)
31 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
3231adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  i  e.  NN )
33 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  i  e.  Prime )
34 pcmpt.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
3534ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  A. n  e.  Prime  A  e.  NN0 )
36 nfcsb1v 3090 . . . . . . . . . . . . . . 15  |-  F/_ n [_ i  /  n ]_ A
3736nfel1 2330 . . . . . . . . . . . . . 14  |-  F/ n [_ i  /  n ]_ A  e.  NN0
38 csbeq1a 3066 . . . . . . . . . . . . . . 15  |-  ( n  =  i  ->  A  =  [_ i  /  n ]_ A )
3938eleq1d 2246 . . . . . . . . . . . . . 14  |-  ( n  =  i  ->  ( A  e.  NN0  <->  [_ i  /  n ]_ A  e.  NN0 ) )
4037, 39rspc 2835 . . . . . . . . . . . . 13  |-  ( i  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  [_ i  /  n ]_ A  e.  NN0 ) )
4133, 35, 40sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  [_ i  /  n ]_ A  e. 
NN0 )
4232, 41nnexpcld 10661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN )  /\  i  e.  Prime )  ->  (
i ^ [_ i  /  n ]_ A )  e.  NN )
43 1nn 8919 . . . . . . . . . . . 12  |-  1  e.  NN
4443a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN )  /\  -.  i  e.  Prime )  -> 
1  e.  NN )
45 prmdc 12113 . . . . . . . . . . . 12  |-  ( i  e.  NN  -> DECID  i  e.  Prime )
4645adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  -> DECID  i  e.  Prime )
4742, 44, 46ifcldadc 3563 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A ) ,  1 )  e.  NN )
48 nfcv 2319 . . . . . . . . . . 11  |-  F/_ n
i
4948nfel1 2330 . . . . . . . . . . . 12  |-  F/ n  i  e.  Prime
50 nfcv 2319 . . . . . . . . . . . . 13  |-  F/_ n ^
5148, 50, 36nfov 5899 . . . . . . . . . . . 12  |-  F/_ n
( i ^ [_ i  /  n ]_ A
)
52 nfcv 2319 . . . . . . . . . . . 12  |-  F/_ n
1
5349, 51, 52nfif 3562 . . . . . . . . . . 11  |-  F/_ n if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A
) ,  1 )
54 eleq1 2240 . . . . . . . . . . . 12  |-  ( n  =  i  ->  (
n  e.  Prime  <->  i  e.  Prime ) )
55 id 19 . . . . . . . . . . . . 13  |-  ( n  =  i  ->  n  =  i )
5655, 38oveq12d 5887 . . . . . . . . . . . 12  |-  ( n  =  i  ->  (
n ^ A )  =  ( i ^ [_ i  /  n ]_ A ) )
5754, 56ifbieq1d 3556 . . . . . . . . . . 11  |-  ( n  =  i  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A ) ,  1 ) )
58 pcmpt.1 . . . . . . . . . . 11  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
5948, 53, 57, 58fvmptf 5604 . . . . . . . . . 10  |-  ( ( i  e.  NN  /\  if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A
) ,  1 )  e.  NN )  -> 
( F `  i
)  =  if ( i  e.  Prime ,  ( i ^ [_ i  /  n ]_ A ) ,  1 ) )
6031, 47, 59syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  =  if ( i  e. 
Prime ,  ( i ^ [_ i  /  n ]_ A ) ,  1 ) )
6160, 47eqeltrd 2254 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  NN )
6230, 61sylan2br 288 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ZZ>= `  1 )
)  ->  ( F `  i )  e.  NN )
63 nnmulcl 8929 . . . . . . . 8  |-  ( ( i  e.  NN  /\  j  e.  NN )  ->  ( i  x.  j
)  e.  NN )
6463adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  NN  /\  j  e.  NN ) )  -> 
( i  x.  j
)  e.  NN )
6529, 62, 64seq3-1 10446 . . . . . 6  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 1 )  =  ( F `  1
) )
66 1nprm 12097 . . . . . . . . . 10  |-  -.  1  e.  Prime
67 eleq1 2240 . . . . . . . . . 10  |-  ( n  =  1  ->  (
n  e.  Prime  <->  1  e.  Prime ) )
6866, 67mtbiri 675 . . . . . . . . 9  |-  ( n  =  1  ->  -.  n  e.  Prime )
6968iffalsed 3544 . . . . . . . 8  |-  ( n  =  1  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  1 )
70 1ex 7943 . . . . . . . 8  |-  1  e.  _V
7169, 58, 70fvmpt 5589 . . . . . . 7  |-  ( 1  e.  NN  ->  ( F `  1 )  =  1 )
7243, 71ax-mp 5 . . . . . 6  |-  ( F `
 1 )  =  1
7365, 72eqtrdi 2226 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 1 )  =  1 )
7473oveq2d 5885 . . . 4  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  1
) )  =  ( P  pCnt  1 ) )
75 prmgt1 12115 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
76 1z 9268 . . . . . . . 8  |-  1  e.  ZZ
77 prmz 12094 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
78 zltnle 9288 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <  P  <->  -.  P  <_  1 ) )
7976, 77, 78sylancr 414 . . . . . . 7  |-  ( P  e.  Prime  ->  ( 1  <  P  <->  -.  P  <_  1 ) )
8075, 79mpbid 147 . . . . . 6  |-  ( P  e.  Prime  ->  -.  P  <_  1 )
8180iffalsed 3544 . . . . 5  |-  ( P  e.  Prime  ->  if ( P  <_  1 ,  B ,  0 )  =  0 )
8226, 81syl 14 . . . 4  |-  ( ph  ->  if ( P  <_ 
1 ,  B , 
0 )  =  0 )
8328, 74, 823eqtr4d 2220 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  1
) )  =  if ( P  <_  1 ,  B ,  0 ) )
8426adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  P  e.  Prime )
8558, 34pcmptcl 12323 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
8685simpld 112 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : NN --> NN )
87 peano2nn 8920 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
88 ffvelcdm 5645 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> NN  /\  ( k  +  1 )  e.  NN )  ->  ( F `  ( k  +  1 ) )  e.  NN )
8986, 87, 88syl2an 289 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  NN )
9089adantrr 479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( F `  (
k  +  1 ) )  e.  NN )
9184, 90pccld 12283 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  ( F `  ( k  +  1 ) ) )  e.  NN0 )
9291nn0cnd 9220 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  ( F `  ( k  +  1 ) ) )  e.  CC )
9392addid2d 8097 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( 0  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )
9487ad2antrl 490 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( k  +  1 )  e.  NN )
9587ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  (
k  +  1 )  e.  NN )
96 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  (
k  +  1 )  e.  Prime )
9734ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  A. n  e.  Prime  A  e.  NN0 )
98 nfcsb1v 3090 . . . . . . . . . . . . . . . . . . 19  |-  F/_ n [_ ( k  +  1 )  /  n ]_ A
9998nfel1 2330 . . . . . . . . . . . . . . . . . 18  |-  F/ n [_ ( k  +  1 )  /  n ]_ A  e.  NN0
100 csbeq1a 3066 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( k  +  1 )  ->  A  =  [_ ( k  +  1 )  /  n ]_ A )
101100eleq1d 2246 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( k  +  1 )  ->  ( A  e.  NN0  <->  [_ ( k  +  1 )  /  n ]_ A  e.  NN0 ) )
10299, 101rspc 2835 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  [_ ( k  +  1 )  /  n ]_ A  e.  NN0 ) )
10396, 97, 102sylc 62 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  [_ (
k  +  1 )  /  n ]_ A  e.  NN0 )
10495, 103nnexpcld 10661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  +  1 )  e.  Prime )  ->  (
( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
)  e.  NN )
10543a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( k  +  1 )  e.  Prime )  ->  1  e.  NN )
10687adantl 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
107 prmdc 12113 . . . . . . . . . . . . . . . 16  |-  ( ( k  +  1 )  e.  NN  -> DECID  ( k  +  1 )  e.  Prime )
108106, 107syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  -> DECID  ( k  +  1 )  e.  Prime )
109104, 105, 108ifcldadc 3563 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ,  1 )  e.  NN )
110109adantrr 479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  e.  NN )
111 nfcv 2319 . . . . . . . . . . . . . 14  |-  F/_ n
( k  +  1 )
112 nfv 1528 . . . . . . . . . . . . . . 15  |-  F/ n
( k  +  1 )  e.  Prime
113111, 50, 98nfov 5899 . . . . . . . . . . . . . . 15  |-  F/_ n
( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A )
114112, 113, 52nfif 3562 . . . . . . . . . . . . . 14  |-  F/_ n if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )
115 eleq1 2240 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  (
n  e.  Prime  <->  ( k  +  1 )  e. 
Prime ) )
116 id 19 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( k  +  1 )  ->  n  =  ( k  +  1 ) )
117116, 100oveq12d 5887 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  (
n ^ A )  =  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
118115, 117ifbieq1d 3556 . . . . . . . . . . . . . 14  |-  ( n  =  ( k  +  1 )  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 ) )
119111, 114, 118, 58fvmptf 5604 . . . . . . . . . . . . 13  |-  ( ( ( k  +  1 )  e.  NN  /\  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  e.  NN )  ->  ( F `  ( k  +  1 ) )  =  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 ) )
12094, 110, 119syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( F `  (
k  +  1 ) )  =  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ,  1 ) )
121 simprr 531 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( k  +  1 )  =  P )
122121, 84eqeltrd 2254 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( k  +  1 )  e.  Prime )
123122iftrued 3541 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  =  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
124121csbeq1d 3064 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  [_ ( k  +  1 )  /  n ]_ A  =  [_ P  /  n ]_ A )
125 nfcvd 2320 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Prime  ->  F/_ n B )
126 pcmpt.5 . . . . . . . . . . . . . . . 16  |-  ( n  =  P  ->  A  =  B )
127125, 126csbiegf 3100 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  [_ P  /  n ]_ A  =  B )
12884, 127syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  [_ P  /  n ]_ A  =  B
)
129124, 128eqtrd 2210 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  [_ ( k  +  1 )  /  n ]_ A  =  B )
130121, 129oveq12d 5887 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A )  =  ( P ^ B ) )
131120, 123, 1303eqtrd 2214 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( F `  (
k  +  1 ) )  =  ( P ^ B ) )
132131oveq2d 5885 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  ( F `  ( k  +  1 ) ) )  =  ( P 
pCnt  ( P ^ B ) ) )
133126eleq1d 2246 . . . . . . . . . . . . . 14  |-  ( n  =  P  ->  ( A  e.  NN0  <->  B  e.  NN0 ) )
134133rspcv 2837 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  B  e.  NN0 ) )
13526, 34, 134sylc 62 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  NN0 )
136135adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  B  e.  NN0 )
137 pcidlem 12305 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  B  e.  NN0 )  ->  ( P  pCnt  ( P ^ B ) )  =  B )
13826, 136, 137syl2an2r 595 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  ( P ^ B ) )  =  B )
13993, 132, 1383eqtrd 2214 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( 0  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  B )
140 oveq1 5876 . . . . . . . . . 10  |-  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  0  ->  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  +  ( P 
pCnt  ( F `  ( k  +  1 ) ) ) )  =  ( 0  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
141140eqeq1d 2186 . . . . . . . . 9  |-  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  0  ->  ( ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  B  <->  ( 0  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  B ) )
142139, 141syl5ibrcom 157 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  =  0  ->  ( ( P  pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  +  ( P 
pCnt  ( F `  ( k  +  1 ) ) ) )  =  B ) )
143 nnre 8915 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  RR )
144143ltp1d 8876 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  <  ( k  +  1 ) )
145 nnz 9261 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  ZZ )
14687nnzd 9363 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  ZZ )
147 zltnle 9288 . . . . . . . . . . . . . 14  |-  ( ( k  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( k  < 
( k  +  1 )  <->  -.  ( k  +  1 )  <_ 
k ) )
148145, 146, 147syl2anc 411 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  <  ( k  +  1 )  <->  -.  (
k  +  1 )  <_  k ) )
149144, 148mpbid 147 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  -.  ( k  +  1 )  <_  k )
150149ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  -.  ( k  +  1 )  <_  k )
151121breq1d 4010 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( k  +  1 )  <_  k  <->  P  <_  k ) )
152150, 151mtbid 672 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  -.  P  <_  k )
153152iffalsed 3544 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  if ( P  <_  k ,  B ,  0 )  =  0 )
154153eqeq2d 2189 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  =  if ( P  <_ 
k ,  B , 
0 )  <->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `
 k ) )  =  0 ) )
155 simpr 110 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
156 nnuz 9552 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
157155, 156eleqtrdi 2270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
15862adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  i  e.  ( ZZ>= `  1 )
)  ->  ( F `  i )  e.  NN )
15963adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
i  e.  NN  /\  j  e.  NN )
)  ->  ( i  x.  j )  e.  NN )
160157, 158, 159seq3p1 10448 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) )  =  ( (  seq 1 (  x.  ,  F ) `  k )  x.  ( F `  ( k  +  1 ) ) ) )
161160oveq2d 5885 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) )  =  ( P 
pCnt  ( (  seq 1 (  x.  ,  F ) `  k
)  x.  ( F `
 ( k  +  1 ) ) ) ) )
16226adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  P  e. 
Prime )
16385simprd 114 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
164163ffvelcdmda 5647 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `  k
)  e.  NN )
165 nnz 9261 . . . . . . . . . . . . . 14  |-  ( (  seq 1 (  x.  ,  F ) `  k )  e.  NN  ->  (  seq 1 (  x.  ,  F ) `
 k )  e.  ZZ )
166 nnne0 8936 . . . . . . . . . . . . . 14  |-  ( (  seq 1 (  x.  ,  F ) `  k )  e.  NN  ->  (  seq 1 (  x.  ,  F ) `
 k )  =/=  0 )
167165, 166jca 306 . . . . . . . . . . . . 13  |-  ( (  seq 1 (  x.  ,  F ) `  k )  e.  NN  ->  ( (  seq 1
(  x.  ,  F
) `  k )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  k
)  =/=  0 ) )
168164, 167syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( (  seq 1 (  x.  ,  F ) `  k )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 k )  =/=  0 ) )
169 nnz 9261 . . . . . . . . . . . . . 14  |-  ( ( F `  ( k  +  1 ) )  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
170 nnne0 8936 . . . . . . . . . . . . . 14  |-  ( ( F `  ( k  +  1 ) )  e.  NN  ->  ( F `  ( k  +  1 ) )  =/=  0 )
171169, 170jca 306 . . . . . . . . . . . . 13  |-  ( ( F `  ( k  +  1 ) )  e.  NN  ->  (
( F `  (
k  +  1 ) )  e.  ZZ  /\  ( F `  ( k  +  1 ) )  =/=  0 ) )
17289, 171syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( k  +  1 ) )  e.  ZZ  /\  ( F `  ( k  +  1 ) )  =/=  0 ) )
173 pcmul 12284 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
(  seq 1 (  x.  ,  F ) `  k )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 k )  =/=  0 )  /\  (
( F `  (
k  +  1 ) )  e.  ZZ  /\  ( F `  ( k  +  1 ) )  =/=  0 ) )  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `
 k )  x.  ( F `  (
k  +  1 ) ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
174162, 168, 172, 173syl3anc 1238 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( P 
pCnt  ( (  seq 1 (  x.  ,  F ) `  k
)  x.  ( F `
 ( k  +  1 ) ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
175161, 174eqtrd 2210 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
176175adantrr 479 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
177 prmnn 12093 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
17826, 177syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
179178nnred 8921 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  RR )
180179adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  P  e.  RR )
181180leidd 8461 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  P  <_  P )
182181, 121breqtrrd 4028 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  P  <_  ( k  +  1 ) )
183182iftrued 3541 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  ->  if ( P  <_  (
k  +  1 ) ,  B ,  0 )  =  B )
184176, 183eqeq12d 2192 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 )  <->  ( ( P  pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  +  ( P 
pCnt  ( F `  ( k  +  1 ) ) ) )  =  B ) )
185142, 154, 1843imtr4d 203 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =  P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  =  if ( P  <_ 
k ,  B , 
0 )  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) )  =  if ( P  <_  ( k  +  1 ) ,  B ,  0 ) ) )
186185expr 375 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  =  P  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 )  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 ) ) ) )
187175adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) ) )
188 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( k  +  1 )  =/= 
P )
189188necomd 2433 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  P  =/=  ( k  +  1 ) )
19026ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  P  e. 
Prime )
191 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( k  +  1 )  e. 
Prime )
19234ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  A. n  e.  Prime  A  e.  NN0 )
193191, 192, 102sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  [_ (
k  +  1 )  /  n ]_ A  e.  NN0 )
194 prmdvdsexpr 12133 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  (
k  +  1 )  e.  Prime  /\  [_ (
k  +  1 )  /  n ]_ A  e.  NN0 )  ->  ( P  ||  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A )  ->  P  =  ( k  +  1 ) ) )
195190, 191, 193, 194syl3anc 1238 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( P 
||  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A )  ->  P  =  ( k  +  1 ) ) )
196195necon3ad 2389 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( P  =/=  ( k  +  1 )  ->  -.  P  ||  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ) )
197189, 196mpd 13 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  -.  P  ||  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
19887ad2antrl 490 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( k  +  1 )  e.  NN )
199109adantrr 479 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  e.  NN )
200198, 199, 119syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( F `  (
k  +  1 ) )  =  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ,  1 ) )
201 iftrue 3539 . . . . . . . . . . . . . . . 16  |-  ( ( k  +  1 )  e.  Prime  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ,  1 )  =  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
202200, 201sylan9eq 2230 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( F `
 ( k  +  1 ) )  =  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) )
203202breq2d 4012 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( P 
||  ( F `  ( k  +  1 ) )  <->  P  ||  (
( k  +  1 ) ^ [_ (
k  +  1 )  /  n ]_ A
) ) )
204197, 203mtbird 673 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  -.  P  ||  ( F `  (
k  +  1 ) ) )
20586, 198, 88syl2an2r 595 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( F `  (
k  +  1 ) )  e.  NN )
206205adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( F `
 ( k  +  1 ) )  e.  NN )
207 pceq0 12304 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  ( F `  ( k  +  1 ) )  e.  NN )  -> 
( ( P  pCnt  ( F `  ( k  +  1 ) ) )  =  0  <->  -.  P  ||  ( F `  ( k  +  1 ) ) ) )
208190, 206, 207syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( ( P  pCnt  ( F `  ( k  +  1 ) ) )  =  0  <->  -.  P  ||  ( F `  ( k  +  1 ) ) ) )
209204, 208mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  ( k  +  1 )  e. 
Prime )  ->  ( P 
pCnt  ( F `  ( k  +  1 ) ) )  =  0 )
210 iffalse 3542 . . . . . . . . . . . . . . 15  |-  ( -.  ( k  +  1 )  e.  Prime  ->  if ( ( k  +  1 )  e.  Prime ,  ( ( k  +  1 ) ^ [_ ( k  +  1 )  /  n ]_ A ) ,  1 )  =  1 )
211200, 210sylan9eq 2230 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  -.  (
k  +  1 )  e.  Prime )  ->  ( F `  ( k  +  1 ) )  =  1 )
212211oveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  -.  (
k  +  1 )  e.  Prime )  ->  ( P  pCnt  ( F `  ( k  +  1 ) ) )  =  ( P  pCnt  1
) )
21328ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  -.  (
k  +  1 )  e.  Prime )  ->  ( P  pCnt  1 )  =  0 )
214212, 213eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  NN  /\  ( k  +  1 )  =/=  P ) )  /\  -.  (
k  +  1 )  e.  Prime )  ->  ( P  pCnt  ( F `  ( k  +  1 ) ) )  =  0 )
215 exmiddc 836 . . . . . . . . . . . . 13  |-  (DECID  ( k  +  1 )  e. 
Prime  ->  ( ( k  +  1 )  e. 
Prime  \/  -.  ( k  +  1 )  e. 
Prime ) )
216198, 107, 2153syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( k  +  1 )  e.  Prime  \/ 
-.  ( k  +  1 )  e.  Prime ) )
217209, 214, 216mpjaodan 798 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  ( F `  ( k  +  1 ) ) )  =  0 )
218217oveq2d 5885 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  +  ( P  pCnt  ( F `  ( k  +  1 ) ) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  +  0 ) )
21926adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  ->  P  e.  Prime )
220164adantrr 479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
(  seq 1 (  x.  ,  F ) `  k )  e.  NN )
221219, 220pccld 12283 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  e.  NN0 )
222221nn0cnd 9220 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  e.  CC )
223222addid1d 8096 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  +  0 )  =  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) ) )
224187, 218, 2233eqtrd 2214 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) ) )
225219, 77syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  ->  P  e.  ZZ )
226146ad2antrl 490 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( k  +  1 )  e.  ZZ )
227 zltlen 9320 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( P  < 
( k  +  1 )  <->  ( P  <_ 
( k  +  1 )  /\  ( k  +  1 )  =/= 
P ) ) )
228225, 226, 227syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  <  (
k  +  1 )  <-> 
( P  <_  (
k  +  1 )  /\  ( k  +  1 )  =/=  P
) ) )
229 simprl 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
k  e.  NN )
230 nnleltp1 9301 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  k  e.  NN )  ->  ( P  <_  k  <->  P  <  ( k  +  1 ) ) )
231178, 229, 230syl2an2r 595 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  <_  k  <->  P  <  ( k  +  1 ) ) )
232 simprr 531 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( k  +  1 )  =/=  P )
233232biantrud 304 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  <_  (
k  +  1 )  <-> 
( P  <_  (
k  +  1 )  /\  ( k  +  1 )  =/=  P
) ) )
234228, 231, 2333bitr4rd 221 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( P  <_  (
k  +  1 )  <-> 
P  <_  k )
)
235234ifbid 3555 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  ->  if ( P  <_  (
k  +  1 ) ,  B ,  0 )  =  if ( P  <_  k ,  B ,  0 ) )
236224, 235eqeq12d 2192 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 )  <->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `
 k ) )  =  if ( P  <_  k ,  B ,  0 ) ) )
237236biimprd 158 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  NN  /\  ( k  +  1 )  =/= 
P ) )  -> 
( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k ) )  =  if ( P  <_ 
k ,  B , 
0 )  ->  ( P  pCnt  (  seq 1
(  x.  ,  F
) `  ( k  +  1 ) ) )  =  if ( P  <_  ( k  +  1 ) ,  B ,  0 ) ) )
238237expr 375 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  =/=  P  ->  (
( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 )  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 ) ) ) )
239106nnzd 9363 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  ZZ )
240162, 77syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  P  e.  ZZ )
241 zdceq 9317 . . . . . . . 8  |-  ( ( ( k  +  1 )  e.  ZZ  /\  P  e.  ZZ )  -> DECID  ( k  +  1 )  =  P )
242239, 240, 241syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  -> DECID  ( k  +  1 )  =  P )
243 dcne 2358 . . . . . . 7  |-  (DECID  ( k  +  1 )  =  P  <->  ( ( k  +  1 )  =  P  \/  ( k  +  1 )  =/= 
P ) )
244242, 243sylib 122 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  =  P  \/  (
k  +  1 )  =/=  P ) )
245186, 238, 244mpjaod 718 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  k
) )  =  if ( P  <_  k ,  B ,  0 )  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 ) ) )
246245expcom 116 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  =  if ( P  <_  k ,  B ,  0 )  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  ( k  +  1 ) ) )  =  if ( P  <_ 
( k  +  1 ) ,  B , 
0 ) ) ) )
247246a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  k )
)  =  if ( P  <_  k ,  B ,  0 ) )  ->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  (
k  +  1 ) ) )  =  if ( P  <_  (
k  +  1 ) ,  B ,  0 ) ) ) )
2487, 13, 19, 25, 83, 247nnind 8924 . 2  |-  ( N  e.  NN  ->  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N ) )  =  if ( P  <_  N ,  B , 
0 ) ) )
2491, 248mpcom 36 1  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   [_csb 3057   ifcif 3534   class class class wbr 4000    |-> cmpt 4061   -->wf 5208   ` cfv 5212  (class class class)co 5869   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983   NNcn 8908   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517    seqcseq 10431   ^cexp 10505    || cdvds 11778   Primecprime 12090    pCnt cpc 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by:  pcmpt2  12325  pcprod  12327  1arithlem4  12347
  Copyright terms: Public domain W3C validator