Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eucalglt | Unicode version |
Description: The second member of the state decreases with each iteration of the step function for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 |
Ref | Expression |
---|---|
eucalglt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucalgval.1 | . . . . . . . 8 | |
2 | 1 | eucalgval 11911 | . . . . . . 7 |
3 | 2 | adantr 274 | . . . . . 6 |
4 | simpr 109 | . . . . . . . 8 | |
5 | iftrue 3510 | . . . . . . . . . . . . 13 | |
6 | 5 | eqeq2d 2169 | . . . . . . . . . . . 12 |
7 | fveq2 5465 | . . . . . . . . . . . 12 | |
8 | 6, 7 | syl6bi 162 | . . . . . . . . . . 11 |
9 | eqeq2 2167 | . . . . . . . . . . 11 | |
10 | 8, 9 | sylibd 148 | . . . . . . . . . 10 |
11 | 3, 10 | syl5com 29 | . . . . . . . . 9 |
12 | 11 | necon3ad 2369 | . . . . . . . 8 |
13 | 4, 12 | mpd 13 | . . . . . . 7 |
14 | 13 | iffalsed 3515 | . . . . . 6 |
15 | 3, 14 | eqtrd 2190 | . . . . 5 |
16 | 15 | fveq2d 5469 | . . . 4 |
17 | xp2nd 6108 | . . . . . 6 | |
18 | 17 | adantr 274 | . . . . 5 |
19 | 1st2nd2 6117 | . . . . . . . . 9 | |
20 | 19 | adantr 274 | . . . . . . . 8 |
21 | 20 | fveq2d 5469 | . . . . . . 7 |
22 | df-ov 5821 | . . . . . . 7 | |
23 | 21, 22 | eqtr4di 2208 | . . . . . 6 |
24 | xp1st 6107 | . . . . . . . . 9 | |
25 | 24 | adantr 274 | . . . . . . . 8 |
26 | 25 | nn0zd 9267 | . . . . . . 7 |
27 | 13 | neqned 2334 | . . . . . . . 8 |
28 | elnnne0 9087 | . . . . . . . 8 | |
29 | 18, 27, 28 | sylanbrc 414 | . . . . . . 7 |
30 | 26, 29 | zmodcld 10226 | . . . . . 6 |
31 | 23, 30 | eqeltrd 2234 | . . . . 5 |
32 | op2ndg 6093 | . . . . 5 | |
33 | 18, 31, 32 | syl2anc 409 | . . . 4 |
34 | 16, 33, 23 | 3eqtrd 2194 | . . 3 |
35 | zq 9517 | . . . . 5 | |
36 | 26, 35 | syl 14 | . . . 4 |
37 | 18 | nn0zd 9267 | . . . . 5 |
38 | zq 9517 | . . . . 5 | |
39 | 37, 38 | syl 14 | . . . 4 |
40 | 29 | nngt0d 8860 | . . . 4 |
41 | modqlt 10214 | . . . 4 | |
42 | 36, 39, 40, 41 | syl3anc 1220 | . . 3 |
43 | 34, 42 | eqbrtrd 3986 | . 2 |
44 | 43 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1335 wcel 2128 wne 2327 cif 3505 cop 3563 class class class wbr 3965 cxp 4581 cfv 5167 (class class class)co 5818 cmpo 5820 c1st 6080 c2nd 6081 cc0 7715 clt 7895 cn 8816 cn0 9073 cz 9150 cq 9510 cmo 10203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-n0 9074 df-z 9151 df-q 9511 df-rp 9543 df-fl 10151 df-mod 10204 |
This theorem is referenced by: eucalgcvga 11915 |
Copyright terms: Public domain | W3C validator |