ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalglt Unicode version

Theorem eucalglt 12250
Description: The second member of the state decreases with each iteration of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalglt  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 X ) )  =/=  0  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) ) )
Distinct variable group:    x, y, X
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalglt
StepHypRef Expression
1 eucalgval.1 . . . . . . . 8  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
21eucalgval 12247 . . . . . . 7  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
32adantr 276 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( E `  X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
4 simpr 110 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =/=  0 )
5 iftrue 3567 . . . . . . . . . . . . 13  |-  ( ( 2nd `  X )  =  0  ->  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  =  X )
65eqeq2d 2208 . . . . . . . . . . . 12  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  <->  ( E `  X )  =  X ) )
7 fveq2 5561 . . . . . . . . . . . 12  |-  ( ( E `  X )  =  X  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  X
) )
86, 7biimtrdi 163 . . . . . . . . . . 11  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  X
) ) )
9 eqeq2 2206 . . . . . . . . . . 11  |-  ( ( 2nd `  X )  =  0  ->  (
( 2nd `  ( E `  X )
)  =  ( 2nd `  X )  <->  ( 2nd `  ( E `  X
) )  =  0 ) )
108, 9sylibd 149 . . . . . . . . . 10  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  ->  ( 2nd `  ( E `  X ) )  =  0 ) )
113, 10syl5com 29 . . . . . . . . 9  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 2nd `  X
)  =  0  -> 
( 2nd `  ( E `  X )
)  =  0 ) )
1211necon3ad 2409 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 2nd `  ( E `  X )
)  =/=  0  ->  -.  ( 2nd `  X
)  =  0 ) )
134, 12mpd 13 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  -.  ( 2nd `  X )  =  0 )
1413iffalsed 3572 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  =  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )
153, 14eqtrd 2229 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( E `  X )  =  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )
1615fveq2d 5565 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
17 xp2nd 6233 . . . . . 6  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  X )  e.  NN0 )
1817adantr 276 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e. 
NN0 )
19 1st2nd2 6242 . . . . . . . . 9  |-  ( X  e.  ( NN0  X.  NN0 )  ->  X  = 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. )
2019adantr 276 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >. )
2120fveq2d 5565 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. ) )
22 df-ov 5928 . . . . . . 7  |-  ( ( 1st `  X )  mod  ( 2nd `  X
) )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X )
>. )
2321, 22eqtr4di 2247 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  =  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) )
24 xp1st 6232 . . . . . . . . 9  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 1st `  X )  e.  NN0 )
2524adantr 276 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e. 
NN0 )
2625nn0zd 9463 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e.  ZZ )
2713neqned 2374 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  =/=  0 )
28 elnnne0 9280 . . . . . . . 8  |-  ( ( 2nd `  X )  e.  NN  <->  ( ( 2nd `  X )  e. 
NN0  /\  ( 2nd `  X )  =/=  0
) )
2918, 27, 28sylanbrc 417 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  NN )
3026, 29zmodcld 10454 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  e. 
NN0 )
3123, 30eqeltrd 2273 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  e. 
NN0 )
32 op2ndg 6218 . . . . 5  |-  ( ( ( 2nd `  X
)  e.  NN0  /\  (  mod  `  X )  e.  NN0 )  ->  ( 2nd `  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )  =  (  mod  `  X
) )
3318, 31, 32syl2anc 411 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )  =  (  mod  `  X
) )
3416, 33, 233eqtrd 2233 . . 3  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) )
35 zq 9717 . . . . 5  |-  ( ( 1st `  X )  e.  ZZ  ->  ( 1st `  X )  e.  QQ )
3626, 35syl 14 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e.  QQ )
3718nn0zd 9463 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  ZZ )
38 zq 9717 . . . . 5  |-  ( ( 2nd `  X )  e.  ZZ  ->  ( 2nd `  X )  e.  QQ )
3937, 38syl 14 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  QQ )
4029nngt0d 9051 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  0  <  ( 2nd `  X
) )
41 modqlt 10442 . . . 4  |-  ( ( ( 1st `  X
)  e.  QQ  /\  ( 2nd `  X )  e.  QQ  /\  0  <  ( 2nd `  X
) )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  < 
( 2nd `  X
) )
4236, 39, 40, 41syl3anc 1249 . . 3  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  < 
( 2nd `  X
) )
4334, 42eqbrtrd 4056 . 2  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) )
4443ex 115 1  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 X ) )  =/=  0  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   ifcif 3562   <.cop 3626   class class class wbr 4034    X. cxp 4662   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206   0cc0 7896    < clt 8078   NNcn 9007   NN0cn0 9266   ZZcz 9343   QQcq 9710    mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432
This theorem is referenced by:  eucalgcvga  12251
  Copyright terms: Public domain W3C validator