ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalglt Unicode version

Theorem eucalglt 12379
Description: The second member of the state decreases with each iteration of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalglt  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 X ) )  =/=  0  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) ) )
Distinct variable group:    x, y, X
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalglt
StepHypRef Expression
1 eucalgval.1 . . . . . . . 8  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
21eucalgval 12376 . . . . . . 7  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
32adantr 276 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( E `  X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
4 simpr 110 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =/=  0 )
5 iftrue 3576 . . . . . . . . . . . . 13  |-  ( ( 2nd `  X )  =  0  ->  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  =  X )
65eqeq2d 2217 . . . . . . . . . . . 12  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  <->  ( E `  X )  =  X ) )
7 fveq2 5576 . . . . . . . . . . . 12  |-  ( ( E `  X )  =  X  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  X
) )
86, 7biimtrdi 163 . . . . . . . . . . 11  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  X
) ) )
9 eqeq2 2215 . . . . . . . . . . 11  |-  ( ( 2nd `  X )  =  0  ->  (
( 2nd `  ( E `  X )
)  =  ( 2nd `  X )  <->  ( 2nd `  ( E `  X
) )  =  0 ) )
108, 9sylibd 149 . . . . . . . . . 10  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  ->  ( 2nd `  ( E `  X ) )  =  0 ) )
113, 10syl5com 29 . . . . . . . . 9  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 2nd `  X
)  =  0  -> 
( 2nd `  ( E `  X )
)  =  0 ) )
1211necon3ad 2418 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 2nd `  ( E `  X )
)  =/=  0  ->  -.  ( 2nd `  X
)  =  0 ) )
134, 12mpd 13 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  -.  ( 2nd `  X )  =  0 )
1413iffalsed 3581 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  =  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )
153, 14eqtrd 2238 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( E `  X )  =  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )
1615fveq2d 5580 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
17 xp2nd 6252 . . . . . 6  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  X )  e.  NN0 )
1817adantr 276 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e. 
NN0 )
19 1st2nd2 6261 . . . . . . . . 9  |-  ( X  e.  ( NN0  X.  NN0 )  ->  X  = 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. )
2019adantr 276 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >. )
2120fveq2d 5580 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. ) )
22 df-ov 5947 . . . . . . 7  |-  ( ( 1st `  X )  mod  ( 2nd `  X
) )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X )
>. )
2321, 22eqtr4di 2256 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  =  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) )
24 xp1st 6251 . . . . . . . . 9  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 1st `  X )  e.  NN0 )
2524adantr 276 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e. 
NN0 )
2625nn0zd 9493 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e.  ZZ )
2713neqned 2383 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  =/=  0 )
28 elnnne0 9309 . . . . . . . 8  |-  ( ( 2nd `  X )  e.  NN  <->  ( ( 2nd `  X )  e. 
NN0  /\  ( 2nd `  X )  =/=  0
) )
2918, 27, 28sylanbrc 417 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  NN )
3026, 29zmodcld 10490 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  e. 
NN0 )
3123, 30eqeltrd 2282 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  e. 
NN0 )
32 op2ndg 6237 . . . . 5  |-  ( ( ( 2nd `  X
)  e.  NN0  /\  (  mod  `  X )  e.  NN0 )  ->  ( 2nd `  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )  =  (  mod  `  X
) )
3318, 31, 32syl2anc 411 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )  =  (  mod  `  X
) )
3416, 33, 233eqtrd 2242 . . 3  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) )
35 zq 9747 . . . . 5  |-  ( ( 1st `  X )  e.  ZZ  ->  ( 1st `  X )  e.  QQ )
3626, 35syl 14 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e.  QQ )
3718nn0zd 9493 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  ZZ )
38 zq 9747 . . . . 5  |-  ( ( 2nd `  X )  e.  ZZ  ->  ( 2nd `  X )  e.  QQ )
3937, 38syl 14 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  QQ )
4029nngt0d 9080 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  0  <  ( 2nd `  X
) )
41 modqlt 10478 . . . 4  |-  ( ( ( 1st `  X
)  e.  QQ  /\  ( 2nd `  X )  e.  QQ  /\  0  <  ( 2nd `  X
) )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  < 
( 2nd `  X
) )
4236, 39, 40, 41syl3anc 1250 . . 3  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  < 
( 2nd `  X
) )
4334, 42eqbrtrd 4066 . 2  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) )
4443ex 115 1  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 X ) )  =/=  0  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376   ifcif 3571   <.cop 3636   class class class wbr 4044    X. cxp 4673   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   1stc1st 6224   2ndc2nd 6225   0cc0 7925    < clt 8107   NNcn 9036   NN0cn0 9295   ZZcz 9372   QQcq 9740    mod cmo 10467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468
This theorem is referenced by:  eucalgcvga  12380
  Copyright terms: Public domain W3C validator