ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalglt Unicode version

Theorem eucalglt 12195
Description: The second member of the state decreases with each iteration of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalglt  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 X ) )  =/=  0  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) ) )
Distinct variable group:    x, y, X
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalglt
StepHypRef Expression
1 eucalgval.1 . . . . . . . 8  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
21eucalgval 12192 . . . . . . 7  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
32adantr 276 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( E `  X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
4 simpr 110 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =/=  0 )
5 iftrue 3562 . . . . . . . . . . . . 13  |-  ( ( 2nd `  X )  =  0  ->  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  =  X )
65eqeq2d 2205 . . . . . . . . . . . 12  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  <->  ( E `  X )  =  X ) )
7 fveq2 5554 . . . . . . . . . . . 12  |-  ( ( E `  X )  =  X  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  X
) )
86, 7biimtrdi 163 . . . . . . . . . . 11  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  X
) ) )
9 eqeq2 2203 . . . . . . . . . . 11  |-  ( ( 2nd `  X )  =  0  ->  (
( 2nd `  ( E `  X )
)  =  ( 2nd `  X )  <->  ( 2nd `  ( E `  X
) )  =  0 ) )
108, 9sylibd 149 . . . . . . . . . 10  |-  ( ( 2nd `  X )  =  0  ->  (
( E `  X
)  =  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  ->  ( 2nd `  ( E `  X ) )  =  0 ) )
113, 10syl5com 29 . . . . . . . . 9  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 2nd `  X
)  =  0  -> 
( 2nd `  ( E `  X )
)  =  0 ) )
1211necon3ad 2406 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 2nd `  ( E `  X )
)  =/=  0  ->  -.  ( 2nd `  X
)  =  0 ) )
134, 12mpd 13 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  -.  ( 2nd `  X )  =  0 )
1413iffalsed 3567 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  =  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )
153, 14eqtrd 2226 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( E `  X )  =  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )
1615fveq2d 5558 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =  ( 2nd `  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
17 xp2nd 6219 . . . . . 6  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  X )  e.  NN0 )
1817adantr 276 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e. 
NN0 )
19 1st2nd2 6228 . . . . . . . . 9  |-  ( X  e.  ( NN0  X.  NN0 )  ->  X  = 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. )
2019adantr 276 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >. )
2120fveq2d 5558 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. ) )
22 df-ov 5921 . . . . . . 7  |-  ( ( 1st `  X )  mod  ( 2nd `  X
) )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X )
>. )
2321, 22eqtr4di 2244 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  =  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) )
24 xp1st 6218 . . . . . . . . 9  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 1st `  X )  e.  NN0 )
2524adantr 276 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e. 
NN0 )
2625nn0zd 9437 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e.  ZZ )
2713neqned 2371 . . . . . . . 8  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  =/=  0 )
28 elnnne0 9254 . . . . . . . 8  |-  ( ( 2nd `  X )  e.  NN  <->  ( ( 2nd `  X )  e. 
NN0  /\  ( 2nd `  X )  =/=  0
) )
2918, 27, 28sylanbrc 417 . . . . . . 7  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  NN )
3026, 29zmodcld 10416 . . . . . 6  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  e. 
NN0 )
3123, 30eqeltrd 2270 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (  mod  `  X )  e. 
NN0 )
32 op2ndg 6204 . . . . 5  |-  ( ( ( 2nd `  X
)  e.  NN0  /\  (  mod  `  X )  e.  NN0 )  ->  ( 2nd `  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )  =  (  mod  `  X
) )
3318, 31, 32syl2anc 411 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  <. ( 2nd `  X
) ,  (  mod  `  X ) >. )  =  (  mod  `  X
) )
3416, 33, 233eqtrd 2230 . . 3  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  =  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) )
35 zq 9691 . . . . 5  |-  ( ( 1st `  X )  e.  ZZ  ->  ( 1st `  X )  e.  QQ )
3626, 35syl 14 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 1st `  X )  e.  QQ )
3718nn0zd 9437 . . . . 5  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  ZZ )
38 zq 9691 . . . . 5  |-  ( ( 2nd `  X )  e.  ZZ  ->  ( 2nd `  X )  e.  QQ )
3937, 38syl 14 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  X )  e.  QQ )
4029nngt0d 9026 . . . 4  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  0  <  ( 2nd `  X
) )
41 modqlt 10404 . . . 4  |-  ( ( ( 1st `  X
)  e.  QQ  /\  ( 2nd `  X )  e.  QQ  /\  0  <  ( 2nd `  X
) )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  < 
( 2nd `  X
) )
4236, 39, 40, 41syl3anc 1249 . . 3  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  (
( 1st `  X
)  mod  ( 2nd `  X ) )  < 
( 2nd `  X
) )
4334, 42eqbrtrd 4051 . 2  |-  ( ( X  e.  ( NN0 
X.  NN0 )  /\  ( 2nd `  ( E `  X ) )  =/=  0 )  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) )
4443ex 115 1  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 X ) )  =/=  0  ->  ( 2nd `  ( E `  X ) )  < 
( 2nd `  X
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   ifcif 3557   <.cop 3621   class class class wbr 4029    X. cxp 4657   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   1stc1st 6191   2ndc2nd 6192   0cc0 7872    < clt 8054   NNcn 8982   NN0cn0 9240   ZZcz 9317   QQcq 9684    mod cmo 10393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-q 9685  df-rp 9720  df-fl 10339  df-mod 10394
This theorem is referenced by:  eucalgcvga  12196
  Copyright terms: Public domain W3C validator