| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfunr | Unicode version | ||
| Description: If a class
The hypothesis imposes that
The theorem would still hold if the codomain of |
| Ref | Expression |
|---|---|
| bj-charfunr.1 |
|
| Ref | Expression |
|---|---|
| bj-charfunr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-charfunr.1 |
. . . . 5
| |
| 2 | elmapi 6780 |
. . . . . . . . . 10
| |
| 3 | ffvelcdm 5736 |
. . . . . . . . . . 11
| |
| 4 | 3 | ex 115 |
. . . . . . . . . 10
|
| 5 | 2, 4 | syl 14 |
. . . . . . . . 9
|
| 6 | 0elnn 4685 |
. . . . . . . . . 10
| |
| 7 | nn0eln0 4686 |
. . . . . . . . . . 11
| |
| 8 | 7 | orbi2d 792 |
. . . . . . . . . 10
|
| 9 | 6, 8 | mpbid 147 |
. . . . . . . . 9
|
| 10 | 5, 9 | syl6 33 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | elin 3364 |
. . . . . . . . . . . . . . 15
| |
| 13 | rsp 2555 |
. . . . . . . . . . . . . . 15
| |
| 14 | 12, 13 | biimtrrid 153 |
. . . . . . . . . . . . . 14
|
| 15 | 14 | expd 258 |
. . . . . . . . . . . . 13
|
| 16 | 15 | adantr 276 |
. . . . . . . . . . . 12
|
| 17 | 16 | imp 124 |
. . . . . . . . . . 11
|
| 18 | 17 | necon2bd 2436 |
. . . . . . . . . 10
|
| 19 | eldif 3183 |
. . . . . . . . . . . . . . 15
| |
| 20 | rsp 2555 |
. . . . . . . . . . . . . . 15
| |
| 21 | 19, 20 | biimtrrid 153 |
. . . . . . . . . . . . . 14
|
| 22 | 21 | expd 258 |
. . . . . . . . . . . . 13
|
| 23 | 22 | adantl 277 |
. . . . . . . . . . . 12
|
| 24 | 23 | imp 124 |
. . . . . . . . . . 11
|
| 25 | 24 | necon3ad 2420 |
. . . . . . . . . 10
|
| 26 | 18, 25 | orim12d 788 |
. . . . . . . . 9
|
| 27 | 26 | ex 115 |
. . . . . . . 8
|
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 11, 28 | mpdd 41 |
. . . . . 6
|
| 30 | 29 | adantl 277 |
. . . . 5
|
| 31 | 1, 30 | rexlimddv 2630 |
. . . 4
|
| 32 | 31 | imp 124 |
. . 3
|
| 33 | df-dc 837 |
. . 3
| |
| 34 | 32, 33 | sylibr 134 |
. 2
|
| 35 | 34 | ralrimiva 2581 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 |
| This theorem is referenced by: bj-charfunbi 15946 |
| Copyright terms: Public domain | W3C validator |