Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunr Unicode version

Theorem bj-charfunr 13345
Description: If a class  A has a "weak" characteristic function on a class 
X, then negated membership in 
A is decidable (in other words, membership in  A is testable) in  X.

The hypothesis imposes that 
X be a set. As usual, it could be formulated as  |-  ( ph  ->  ( F : X --> om  /\  ... ) ) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of  f were any class with testable equality to the point where  ( X  \  A ) is sent. (Contributed by BJ, 6-Aug-2024.)

Hypothesis
Ref Expression
bj-charfunr.1  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
Assertion
Ref Expression
bj-charfunr  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Distinct variable groups:    A, f    f, X    ph, f, x
Allowed substitution hints:    A( x)    X( x)

Proof of Theorem bj-charfunr
StepHypRef Expression
1 bj-charfunr.1 . . . . 5  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
2 elmapi 6608 . . . . . . . . . 10  |-  ( f  e.  ( om  ^m  X )  ->  f : X --> om )
3 ffvelrn 5597 . . . . . . . . . . 11  |-  ( ( f : X --> om  /\  x  e.  X )  ->  ( f `  x
)  e.  om )
43ex 114 . . . . . . . . . 10  |-  ( f : X --> om  ->  ( x  e.  X  -> 
( f `  x
)  e.  om )
)
52, 4syl 14 . . . . . . . . 9  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( f `  x
)  e.  om )
)
6 0elnn 4576 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (/)  e.  ( f `  x ) ) )
7 nn0eln0 4577 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  om  ->  ( (/) 
e.  ( f `  x )  <->  ( f `  x )  =/=  (/) ) )
87orbi2d 780 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( ( f `  x )  =  (/)  \/  (/)  e.  ( f `  x ) )  <->  ( (
f `  x )  =  (/)  \/  ( f `
 x )  =/=  (/) ) ) )
96, 8mpbid 146 . . . . . . . . 9  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (
f `  x )  =/=  (/) ) )
105, 9syl6 33 . . . . . . . 8  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
1110adantr 274 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
12 elin 3290 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  i^i  A )  <->  ( x  e.  X  /\  x  e.  A ) )
13 rsp 2504 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  ( X  i^i  A
)  ->  ( f `  x )  =/=  (/) ) )
1412, 13syl5bir 152 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( ( x  e.  X  /\  x  e.  A )  ->  (
f `  x )  =/=  (/) ) )
1514expd 256 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  X  ->  ( x  e.  A  ->  ( f `
 x )  =/=  (/) ) ) )
1615adantr 274 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) ) )
1716imp 123 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) )
1817necon2bd 2385 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =  (/)  ->  -.  x  e.  A )
)
19 eldif 3111 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  \  A )  <->  ( x  e.  X  /\  -.  x  e.  A ) )
20 rsp 2504 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  ( X  \  A
)  ->  ( f `  x )  =  (/) ) )
2119, 20syl5bir 152 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( ( x  e.  X  /\  -.  x  e.  A )  ->  ( f `  x
)  =  (/) ) )
2221expd 256 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x )  =  (/) ) ) )
2322adantl 275 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) ) )
2423imp 123 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) )
2524necon3ad 2369 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =/=  (/)  ->  -.  -.  x  e.  A
) )
2618, 25orim12d 776 . . . . . . . . 9  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
2726ex 114 . . . . . . . 8  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2827adantl 275 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( ( f `
 x )  =  (/)  \/  ( f `  x )  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2911, 28mpdd 41 . . . . . 6  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3029adantl 275 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( om  ^m  X
)  /\  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  /\  A. x  e.  ( X  \  A
) ( f `  x )  =  (/) ) ) )  -> 
( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
311, 30rexlimddv 2579 . . . 4  |-  ( ph  ->  ( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3231imp 123 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A ) )
33 df-dc 821 . . 3  |-  (DECID  -.  x  e.  A  <->  ( -.  x  e.  A  \/  -.  -.  x  e.  A
) )
3432, 33sylibr 133 . 2  |-  ( (
ph  /\  x  e.  X )  -> DECID  -.  x  e.  A
)
3534ralrimiva 2530 1  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   E.wrex 2436    \ cdif 3099    i^i cin 3101   (/)c0 3394   omcom 4547   -->wf 5163   ` cfv 5167  (class class class)co 5818    ^m cmap 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4252  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-map 6588
This theorem is referenced by:  bj-charfunbi  13346
  Copyright terms: Public domain W3C validator