Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunr Unicode version

Theorem bj-charfunr 15456
Description: If a class  A has a "weak" characteristic function on a class 
X, then negated membership in 
A is decidable (in other words, membership in  A is testable) in  X.

The hypothesis imposes that 
X be a set. As usual, it could be formulated as  |-  ( ph  ->  ( F : X --> om  /\  ... ) ) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of  f were any class with testable equality to the point where  ( X  \  A ) is sent. (Contributed by BJ, 6-Aug-2024.)

Hypothesis
Ref Expression
bj-charfunr.1  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
Assertion
Ref Expression
bj-charfunr  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Distinct variable groups:    A, f    f, X    ph, f, x
Allowed substitution hints:    A( x)    X( x)

Proof of Theorem bj-charfunr
StepHypRef Expression
1 bj-charfunr.1 . . . . 5  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
2 elmapi 6729 . . . . . . . . . 10  |-  ( f  e.  ( om  ^m  X )  ->  f : X --> om )
3 ffvelcdm 5695 . . . . . . . . . . 11  |-  ( ( f : X --> om  /\  x  e.  X )  ->  ( f `  x
)  e.  om )
43ex 115 . . . . . . . . . 10  |-  ( f : X --> om  ->  ( x  e.  X  -> 
( f `  x
)  e.  om )
)
52, 4syl 14 . . . . . . . . 9  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( f `  x
)  e.  om )
)
6 0elnn 4655 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (/)  e.  ( f `  x ) ) )
7 nn0eln0 4656 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  om  ->  ( (/) 
e.  ( f `  x )  <->  ( f `  x )  =/=  (/) ) )
87orbi2d 791 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( ( f `  x )  =  (/)  \/  (/)  e.  ( f `  x ) )  <->  ( (
f `  x )  =  (/)  \/  ( f `
 x )  =/=  (/) ) ) )
96, 8mpbid 147 . . . . . . . . 9  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (
f `  x )  =/=  (/) ) )
105, 9syl6 33 . . . . . . . 8  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
1110adantr 276 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
12 elin 3346 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  i^i  A )  <->  ( x  e.  X  /\  x  e.  A ) )
13 rsp 2544 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  ( X  i^i  A
)  ->  ( f `  x )  =/=  (/) ) )
1412, 13biimtrrid 153 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( ( x  e.  X  /\  x  e.  A )  ->  (
f `  x )  =/=  (/) ) )
1514expd 258 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  X  ->  ( x  e.  A  ->  ( f `
 x )  =/=  (/) ) ) )
1615adantr 276 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) ) )
1716imp 124 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) )
1817necon2bd 2425 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =  (/)  ->  -.  x  e.  A )
)
19 eldif 3166 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  \  A )  <->  ( x  e.  X  /\  -.  x  e.  A ) )
20 rsp 2544 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  ( X  \  A
)  ->  ( f `  x )  =  (/) ) )
2119, 20biimtrrid 153 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( ( x  e.  X  /\  -.  x  e.  A )  ->  ( f `  x
)  =  (/) ) )
2221expd 258 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x )  =  (/) ) ) )
2322adantl 277 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) ) )
2423imp 124 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) )
2524necon3ad 2409 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =/=  (/)  ->  -.  -.  x  e.  A
) )
2618, 25orim12d 787 . . . . . . . . 9  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
2726ex 115 . . . . . . . 8  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2827adantl 277 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( ( f `
 x )  =  (/)  \/  ( f `  x )  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2911, 28mpdd 41 . . . . . 6  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3029adantl 277 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( om  ^m  X
)  /\  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  /\  A. x  e.  ( X  \  A
) ( f `  x )  =  (/) ) ) )  -> 
( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
311, 30rexlimddv 2619 . . . 4  |-  ( ph  ->  ( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3231imp 124 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A ) )
33 df-dc 836 . . 3  |-  (DECID  -.  x  e.  A  <->  ( -.  x  e.  A  \/  -.  -.  x  e.  A
) )
3432, 33sylibr 134 . 2  |-  ( (
ph  /\  x  e.  X )  -> DECID  -.  x  e.  A
)
3534ralrimiva 2570 1  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476    \ cdif 3154    i^i cin 3156   (/)c0 3450   omcom 4626   -->wf 5254   ` cfv 5258  (class class class)co 5922    ^m cmap 6707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-map 6709
This theorem is referenced by:  bj-charfunbi  15457
  Copyright terms: Public domain W3C validator