Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunr Unicode version

Theorem bj-charfunr 16173
Description: If a class  A has a "weak" characteristic function on a class 
X, then negated membership in 
A is decidable (in other words, membership in  A is testable) in  X.

The hypothesis imposes that 
X be a set. As usual, it could be formulated as  |-  ( ph  ->  ( F : X --> om  /\  ... ) ) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of  f were any class with testable equality to the point where  ( X  \  A ) is sent. (Contributed by BJ, 6-Aug-2024.)

Hypothesis
Ref Expression
bj-charfunr.1  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
Assertion
Ref Expression
bj-charfunr  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Distinct variable groups:    A, f    f, X    ph, f, x
Allowed substitution hints:    A( x)    X( x)

Proof of Theorem bj-charfunr
StepHypRef Expression
1 bj-charfunr.1 . . . . 5  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
2 elmapi 6817 . . . . . . . . . 10  |-  ( f  e.  ( om  ^m  X )  ->  f : X --> om )
3 ffvelcdm 5768 . . . . . . . . . . 11  |-  ( ( f : X --> om  /\  x  e.  X )  ->  ( f `  x
)  e.  om )
43ex 115 . . . . . . . . . 10  |-  ( f : X --> om  ->  ( x  e.  X  -> 
( f `  x
)  e.  om )
)
52, 4syl 14 . . . . . . . . 9  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( f `  x
)  e.  om )
)
6 0elnn 4711 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (/)  e.  ( f `  x ) ) )
7 nn0eln0 4712 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  om  ->  ( (/) 
e.  ( f `  x )  <->  ( f `  x )  =/=  (/) ) )
87orbi2d 795 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( ( f `  x )  =  (/)  \/  (/)  e.  ( f `  x ) )  <->  ( (
f `  x )  =  (/)  \/  ( f `
 x )  =/=  (/) ) ) )
96, 8mpbid 147 . . . . . . . . 9  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (
f `  x )  =/=  (/) ) )
105, 9syl6 33 . . . . . . . 8  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
1110adantr 276 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
12 elin 3387 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  i^i  A )  <->  ( x  e.  X  /\  x  e.  A ) )
13 rsp 2577 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  ( X  i^i  A
)  ->  ( f `  x )  =/=  (/) ) )
1412, 13biimtrrid 153 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( ( x  e.  X  /\  x  e.  A )  ->  (
f `  x )  =/=  (/) ) )
1514expd 258 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  X  ->  ( x  e.  A  ->  ( f `
 x )  =/=  (/) ) ) )
1615adantr 276 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) ) )
1716imp 124 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) )
1817necon2bd 2458 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =  (/)  ->  -.  x  e.  A )
)
19 eldif 3206 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  \  A )  <->  ( x  e.  X  /\  -.  x  e.  A ) )
20 rsp 2577 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  ( X  \  A
)  ->  ( f `  x )  =  (/) ) )
2119, 20biimtrrid 153 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( ( x  e.  X  /\  -.  x  e.  A )  ->  ( f `  x
)  =  (/) ) )
2221expd 258 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x )  =  (/) ) ) )
2322adantl 277 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) ) )
2423imp 124 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) )
2524necon3ad 2442 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =/=  (/)  ->  -.  -.  x  e.  A
) )
2618, 25orim12d 791 . . . . . . . . 9  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
2726ex 115 . . . . . . . 8  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2827adantl 277 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( ( f `
 x )  =  (/)  \/  ( f `  x )  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2911, 28mpdd 41 . . . . . 6  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3029adantl 277 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( om  ^m  X
)  /\  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  /\  A. x  e.  ( X  \  A
) ( f `  x )  =  (/) ) ) )  -> 
( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
311, 30rexlimddv 2653 . . . 4  |-  ( ph  ->  ( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3231imp 124 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A ) )
33 df-dc 840 . . 3  |-  (DECID  -.  x  e.  A  <->  ( -.  x  e.  A  \/  -.  -.  x  e.  A
) )
3432, 33sylibr 134 . 2  |-  ( (
ph  /\  x  e.  X )  -> DECID  -.  x  e.  A
)
3534ralrimiva 2603 1  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   E.wrex 2509    \ cdif 3194    i^i cin 3196   (/)c0 3491   omcom 4682   -->wf 5314   ` cfv 5318  (class class class)co 6001    ^m cmap 6795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-map 6797
This theorem is referenced by:  bj-charfunbi  16174
  Copyright terms: Public domain W3C validator