Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunr Unicode version

Theorem bj-charfunr 14218
Description: If a class  A has a "weak" characteristic function on a class 
X, then negated membership in 
A is decidable (in other words, membership in  A is testable) in  X.

The hypothesis imposes that 
X be a set. As usual, it could be formulated as  |-  ( ph  ->  ( F : X --> om  /\  ... ) ) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of  f were any class with testable equality to the point where  ( X  \  A ) is sent. (Contributed by BJ, 6-Aug-2024.)

Hypothesis
Ref Expression
bj-charfunr.1  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
Assertion
Ref Expression
bj-charfunr  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Distinct variable groups:    A, f    f, X    ph, f, x
Allowed substitution hints:    A( x)    X( x)

Proof of Theorem bj-charfunr
StepHypRef Expression
1 bj-charfunr.1 . . . . 5  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
2 elmapi 6664 . . . . . . . . . 10  |-  ( f  e.  ( om  ^m  X )  ->  f : X --> om )
3 ffvelcdm 5645 . . . . . . . . . . 11  |-  ( ( f : X --> om  /\  x  e.  X )  ->  ( f `  x
)  e.  om )
43ex 115 . . . . . . . . . 10  |-  ( f : X --> om  ->  ( x  e.  X  -> 
( f `  x
)  e.  om )
)
52, 4syl 14 . . . . . . . . 9  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( f `  x
)  e.  om )
)
6 0elnn 4615 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (/)  e.  ( f `  x ) ) )
7 nn0eln0 4616 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  om  ->  ( (/) 
e.  ( f `  x )  <->  ( f `  x )  =/=  (/) ) )
87orbi2d 790 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( ( f `  x )  =  (/)  \/  (/)  e.  ( f `  x ) )  <->  ( (
f `  x )  =  (/)  \/  ( f `
 x )  =/=  (/) ) ) )
96, 8mpbid 147 . . . . . . . . 9  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (
f `  x )  =/=  (/) ) )
105, 9syl6 33 . . . . . . . 8  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
1110adantr 276 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
12 elin 3318 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  i^i  A )  <->  ( x  e.  X  /\  x  e.  A ) )
13 rsp 2524 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  ( X  i^i  A
)  ->  ( f `  x )  =/=  (/) ) )
1412, 13biimtrrid 153 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( ( x  e.  X  /\  x  e.  A )  ->  (
f `  x )  =/=  (/) ) )
1514expd 258 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  X  ->  ( x  e.  A  ->  ( f `
 x )  =/=  (/) ) ) )
1615adantr 276 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) ) )
1716imp 124 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) )
1817necon2bd 2405 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =  (/)  ->  -.  x  e.  A )
)
19 eldif 3138 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  \  A )  <->  ( x  e.  X  /\  -.  x  e.  A ) )
20 rsp 2524 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  ( X  \  A
)  ->  ( f `  x )  =  (/) ) )
2119, 20biimtrrid 153 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( ( x  e.  X  /\  -.  x  e.  A )  ->  ( f `  x
)  =  (/) ) )
2221expd 258 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x )  =  (/) ) ) )
2322adantl 277 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) ) )
2423imp 124 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) )
2524necon3ad 2389 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =/=  (/)  ->  -.  -.  x  e.  A
) )
2618, 25orim12d 786 . . . . . . . . 9  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
2726ex 115 . . . . . . . 8  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2827adantl 277 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( ( f `
 x )  =  (/)  \/  ( f `  x )  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2911, 28mpdd 41 . . . . . 6  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3029adantl 277 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( om  ^m  X
)  /\  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  /\  A. x  e.  ( X  \  A
) ( f `  x )  =  (/) ) ) )  -> 
( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
311, 30rexlimddv 2599 . . . 4  |-  ( ph  ->  ( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3231imp 124 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A ) )
33 df-dc 835 . . 3  |-  (DECID  -.  x  e.  A  <->  ( -.  x  e.  A  \/  -.  -.  x  e.  A
) )
3432, 33sylibr 134 . 2  |-  ( (
ph  /\  x  e.  X )  -> DECID  -.  x  e.  A
)
3534ralrimiva 2550 1  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456    \ cdif 3126    i^i cin 3128   (/)c0 3422   omcom 4586   -->wf 5208   ` cfv 5212  (class class class)co 5869    ^m cmap 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-map 6644
This theorem is referenced by:  bj-charfunbi  14219
  Copyright terms: Public domain W3C validator