| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfunr | Unicode version | ||
| Description: If a class
The hypothesis imposes that
The theorem would still hold if the codomain of |
| Ref | Expression |
|---|---|
| bj-charfunr.1 |
|
| Ref | Expression |
|---|---|
| bj-charfunr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-charfunr.1 |
. . . . 5
| |
| 2 | elmapi 6817 |
. . . . . . . . . 10
| |
| 3 | ffvelcdm 5768 |
. . . . . . . . . . 11
| |
| 4 | 3 | ex 115 |
. . . . . . . . . 10
|
| 5 | 2, 4 | syl 14 |
. . . . . . . . 9
|
| 6 | 0elnn 4711 |
. . . . . . . . . 10
| |
| 7 | nn0eln0 4712 |
. . . . . . . . . . 11
| |
| 8 | 7 | orbi2d 795 |
. . . . . . . . . 10
|
| 9 | 6, 8 | mpbid 147 |
. . . . . . . . 9
|
| 10 | 5, 9 | syl6 33 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | elin 3387 |
. . . . . . . . . . . . . . 15
| |
| 13 | rsp 2577 |
. . . . . . . . . . . . . . 15
| |
| 14 | 12, 13 | biimtrrid 153 |
. . . . . . . . . . . . . 14
|
| 15 | 14 | expd 258 |
. . . . . . . . . . . . 13
|
| 16 | 15 | adantr 276 |
. . . . . . . . . . . 12
|
| 17 | 16 | imp 124 |
. . . . . . . . . . 11
|
| 18 | 17 | necon2bd 2458 |
. . . . . . . . . 10
|
| 19 | eldif 3206 |
. . . . . . . . . . . . . . 15
| |
| 20 | rsp 2577 |
. . . . . . . . . . . . . . 15
| |
| 21 | 19, 20 | biimtrrid 153 |
. . . . . . . . . . . . . 14
|
| 22 | 21 | expd 258 |
. . . . . . . . . . . . 13
|
| 23 | 22 | adantl 277 |
. . . . . . . . . . . 12
|
| 24 | 23 | imp 124 |
. . . . . . . . . . 11
|
| 25 | 24 | necon3ad 2442 |
. . . . . . . . . 10
|
| 26 | 18, 25 | orim12d 791 |
. . . . . . . . 9
|
| 27 | 26 | ex 115 |
. . . . . . . 8
|
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 11, 28 | mpdd 41 |
. . . . . 6
|
| 30 | 29 | adantl 277 |
. . . . 5
|
| 31 | 1, 30 | rexlimddv 2653 |
. . . 4
|
| 32 | 31 | imp 124 |
. . 3
|
| 33 | df-dc 840 |
. . 3
| |
| 34 | 32, 33 | sylibr 134 |
. 2
|
| 35 | 34 | ralrimiva 2603 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-map 6797 |
| This theorem is referenced by: bj-charfunbi 16174 |
| Copyright terms: Public domain | W3C validator |