Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunr Unicode version

Theorem bj-charfunr 13323
Description: If a class  A has a "weak" characteristic function on a class 
X, then negated membership in 
A is decidable (in other words, membership in  A is testable) in  X.

The hypothesis imposes that 
X be a set. As usual, it could be formulated as  |-  ( ph  ->  ( F : X --> om  /\  ... ) ) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of  f were any class with testable equality to the point where  ( X  \  A ) is sent. (Contributed by BJ, 6-Aug-2024.)

Hypothesis
Ref Expression
bj-charfunr.1  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
Assertion
Ref Expression
bj-charfunr  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Distinct variable groups:    A, f    f, X    ph, f, x
Allowed substitution hints:    A( x)    X( x)

Proof of Theorem bj-charfunr
StepHypRef Expression
1 bj-charfunr.1 . . . . 5  |-  ( ph  ->  E. f  e.  ( om  ^m  X ) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )
2 elmapi 6604 . . . . . . . . . 10  |-  ( f  e.  ( om  ^m  X )  ->  f : X --> om )
3 ffvelrn 5593 . . . . . . . . . . 11  |-  ( ( f : X --> om  /\  x  e.  X )  ->  ( f `  x
)  e.  om )
43ex 114 . . . . . . . . . 10  |-  ( f : X --> om  ->  ( x  e.  X  -> 
( f `  x
)  e.  om )
)
52, 4syl 14 . . . . . . . . 9  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( f `  x
)  e.  om )
)
6 0elnn 4572 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (/)  e.  ( f `  x ) ) )
7 nn0eln0 4573 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  om  ->  ( (/) 
e.  ( f `  x )  <->  ( f `  x )  =/=  (/) ) )
87orbi2d 780 . . . . . . . . . 10  |-  ( ( f `  x )  e.  om  ->  (
( ( f `  x )  =  (/)  \/  (/)  e.  ( f `  x ) )  <->  ( (
f `  x )  =  (/)  \/  ( f `
 x )  =/=  (/) ) ) )
96, 8mpbid 146 . . . . . . . . 9  |-  ( ( f `  x )  e.  om  ->  (
( f `  x
)  =  (/)  \/  (
f `  x )  =/=  (/) ) )
105, 9syl6 33 . . . . . . . 8  |-  ( f  e.  ( om  ^m  X )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
1110adantr 274 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) ) ) )
12 elin 3286 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  i^i  A )  <->  ( x  e.  X  /\  x  e.  A ) )
13 rsp 2501 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  ( X  i^i  A
)  ->  ( f `  x )  =/=  (/) ) )
1412, 13syl5bir 152 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( ( x  e.  X  /\  x  e.  A )  ->  (
f `  x )  =/=  (/) ) )
1514expd 256 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  ->  ( x  e.  X  ->  ( x  e.  A  ->  ( f `
 x )  =/=  (/) ) ) )
1615adantr 274 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) ) )
1716imp 123 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
x  e.  A  -> 
( f `  x
)  =/=  (/) ) )
1817necon2bd 2382 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =  (/)  ->  -.  x  e.  A )
)
19 eldif 3107 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( X  \  A )  <->  ( x  e.  X  /\  -.  x  e.  A ) )
20 rsp 2501 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  ( X  \  A
)  ->  ( f `  x )  =  (/) ) )
2119, 20syl5bir 152 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( ( x  e.  X  /\  -.  x  e.  A )  ->  ( f `  x
)  =  (/) ) )
2221expd 256 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( X  \  A ) ( f `
 x )  =  (/)  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x )  =  (/) ) ) )
2322adantl 275 . . . . . . . . . . . 12  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) ) )
2423imp 123 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  ( -.  x  e.  A  ->  ( f `  x
)  =  (/) ) )
2524necon3ad 2366 . . . . . . . . . 10  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( f `  x
)  =/=  (/)  ->  -.  -.  x  e.  A
) )
2618, 25orim12d 776 . . . . . . . . 9  |-  ( ( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  /\  x  e.  X )  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
2726ex 114 . . . . . . . 8  |-  ( ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) )  ->  ( x  e.  X  ->  (
( ( f `  x )  =  (/)  \/  ( f `  x
)  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2827adantl 275 . . . . . . 7  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( ( ( f `
 x )  =  (/)  \/  ( f `  x )  =/=  (/) )  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) ) )
2911, 28mpdd 41 . . . . . 6  |-  ( ( f  e.  ( om 
^m  X )  /\  ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =/=  (/)  /\  A. x  e.  ( X  \  A ) ( f `
 x )  =  (/) ) )  ->  (
x  e.  X  -> 
( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3029adantl 275 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( om  ^m  X
)  /\  ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =/=  (/)  /\  A. x  e.  ( X  \  A
) ( f `  x )  =  (/) ) ) )  -> 
( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
311, 30rexlimddv 2576 . . . 4  |-  ( ph  ->  ( x  e.  X  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A )
) )
3231imp 123 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  x  e.  A  \/  -.  -.  x  e.  A ) )
33 df-dc 821 . . 3  |-  (DECID  -.  x  e.  A  <->  ( -.  x  e.  A  \/  -.  -.  x  e.  A
) )
3432, 33sylibr 133 . 2  |-  ( (
ph  /\  x  e.  X )  -> DECID  -.  x  e.  A
)
3534ralrimiva 2527 1  |-  ( ph  ->  A. x  e.  X DECID  -.  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 2125    =/= wne 2324   A.wral 2432   E.wrex 2433    \ cdif 3095    i^i cin 3097   (/)c0 3390   omcom 4543   -->wf 5159   ` cfv 5163  (class class class)co 5814    ^m cmap 6582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-id 4248  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-map 6584
This theorem is referenced by:  bj-charfunbi  13324
  Copyright terms: Public domain W3C validator