ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlt1pig Unicode version

Theorem nlt1pig 7403
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nlt1pig  |-  ( A  e.  N.  ->  -.  A  <N  1o )

Proof of Theorem nlt1pig
StepHypRef Expression
1 elni 7370 . . 3  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
21simprbi 275 . 2  |-  ( A  e.  N.  ->  A  =/=  (/) )
3 noel 3451 . . . . 5  |-  -.  A  e.  (/)
4 1pi 7377 . . . . . . . . 9  |-  1o  e.  N.
5 ltpiord 7381 . . . . . . . . 9  |-  ( ( A  e.  N.  /\  1o  e.  N. )  -> 
( A  <N  1o  <->  A  e.  1o ) )
64, 5mpan2 425 . . . . . . . 8  |-  ( A  e.  N.  ->  ( A  <N  1o  <->  A  e.  1o ) )
7 df-1o 6471 . . . . . . . . . 10  |-  1o  =  suc  (/)
87eleq2i 2260 . . . . . . . . 9  |-  ( A  e.  1o  <->  A  e.  suc  (/) )
9 elsucg 4436 . . . . . . . . 9  |-  ( A  e.  N.  ->  ( A  e.  suc  (/)  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
108, 9bitrid 192 . . . . . . . 8  |-  ( A  e.  N.  ->  ( A  e.  1o  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
116, 10bitrd 188 . . . . . . 7  |-  ( A  e.  N.  ->  ( A  <N  1o  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
1211biimpa 296 . . . . . 6  |-  ( ( A  e.  N.  /\  A  <N  1o )  -> 
( A  e.  (/)  \/  A  =  (/) ) )
1312ord 725 . . . . 5  |-  ( ( A  e.  N.  /\  A  <N  1o )  -> 
( -.  A  e.  (/)  ->  A  =  (/) ) )
143, 13mpi 15 . . . 4  |-  ( ( A  e.  N.  /\  A  <N  1o )  ->  A  =  (/) )
1514ex 115 . . 3  |-  ( A  e.  N.  ->  ( A  <N  1o  ->  A  =  (/) ) )
1615necon3ad 2406 . 2  |-  ( A  e.  N.  ->  ( A  =/=  (/)  ->  -.  A  <N  1o ) )
172, 16mpd 13 1  |-  ( A  e.  N.  ->  -.  A  <N  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164    =/= wne 2364   (/)c0 3447   class class class wbr 4030   suc csuc 4397   omcom 4623   1oc1o 6464   N.cnpi 7334    <N clti 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-eprel 4321  df-suc 4403  df-iom 4624  df-xp 4666  df-1o 6471  df-ni 7366  df-lti 7369
This theorem is referenced by:  caucvgsr  7864
  Copyright terms: Public domain W3C validator