ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlt1pig Unicode version

Theorem nlt1pig 7303
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nlt1pig  |-  ( A  e.  N.  ->  -.  A  <N  1o )

Proof of Theorem nlt1pig
StepHypRef Expression
1 elni 7270 . . 3  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
21simprbi 273 . 2  |-  ( A  e.  N.  ->  A  =/=  (/) )
3 noel 3418 . . . . 5  |-  -.  A  e.  (/)
4 1pi 7277 . . . . . . . . 9  |-  1o  e.  N.
5 ltpiord 7281 . . . . . . . . 9  |-  ( ( A  e.  N.  /\  1o  e.  N. )  -> 
( A  <N  1o  <->  A  e.  1o ) )
64, 5mpan2 423 . . . . . . . 8  |-  ( A  e.  N.  ->  ( A  <N  1o  <->  A  e.  1o ) )
7 df-1o 6395 . . . . . . . . . 10  |-  1o  =  suc  (/)
87eleq2i 2237 . . . . . . . . 9  |-  ( A  e.  1o  <->  A  e.  suc  (/) )
9 elsucg 4389 . . . . . . . . 9  |-  ( A  e.  N.  ->  ( A  e.  suc  (/)  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
108, 9syl5bb 191 . . . . . . . 8  |-  ( A  e.  N.  ->  ( A  e.  1o  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
116, 10bitrd 187 . . . . . . 7  |-  ( A  e.  N.  ->  ( A  <N  1o  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
1211biimpa 294 . . . . . 6  |-  ( ( A  e.  N.  /\  A  <N  1o )  -> 
( A  e.  (/)  \/  A  =  (/) ) )
1312ord 719 . . . . 5  |-  ( ( A  e.  N.  /\  A  <N  1o )  -> 
( -.  A  e.  (/)  ->  A  =  (/) ) )
143, 13mpi 15 . . . 4  |-  ( ( A  e.  N.  /\  A  <N  1o )  ->  A  =  (/) )
1514ex 114 . . 3  |-  ( A  e.  N.  ->  ( A  <N  1o  ->  A  =  (/) ) )
1615necon3ad 2382 . 2  |-  ( A  e.  N.  ->  ( A  =/=  (/)  ->  -.  A  <N  1o ) )
172, 16mpd 13 1  |-  ( A  e.  N.  ->  -.  A  <N  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141    =/= wne 2340   (/)c0 3414   class class class wbr 3989   suc csuc 4350   omcom 4574   1oc1o 6388   N.cnpi 7234    <N clti 7237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-eprel 4274  df-suc 4356  df-iom 4575  df-xp 4617  df-1o 6395  df-ni 7266  df-lti 7269
This theorem is referenced by:  caucvgsr  7764
  Copyright terms: Public domain W3C validator