| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nlt1pig | Unicode version | ||
| Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.) |
| Ref | Expression |
|---|---|
| nlt1pig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elni 7456 |
. . 3
| |
| 2 | 1 | simprbi 275 |
. 2
|
| 3 | noel 3472 |
. . . . 5
| |
| 4 | 1pi 7463 |
. . . . . . . . 9
| |
| 5 | ltpiord 7467 |
. . . . . . . . 9
| |
| 6 | 4, 5 | mpan2 425 |
. . . . . . . 8
|
| 7 | df-1o 6525 |
. . . . . . . . . 10
| |
| 8 | 7 | eleq2i 2274 |
. . . . . . . . 9
|
| 9 | elsucg 4469 |
. . . . . . . . 9
| |
| 10 | 8, 9 | bitrid 192 |
. . . . . . . 8
|
| 11 | 6, 10 | bitrd 188 |
. . . . . . 7
|
| 12 | 11 | biimpa 296 |
. . . . . 6
|
| 13 | 12 | ord 726 |
. . . . 5
|
| 14 | 3, 13 | mpi 15 |
. . . 4
|
| 15 | 14 | ex 115 |
. . 3
|
| 16 | 15 | necon3ad 2420 |
. 2
|
| 17 | 2, 16 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-eprel 4354 df-suc 4436 df-iom 4657 df-xp 4699 df-1o 6525 df-ni 7452 df-lti 7455 |
| This theorem is referenced by: caucvgsr 7950 |
| Copyright terms: Public domain | W3C validator |