ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlt1pig Unicode version

Theorem nlt1pig 7489
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nlt1pig  |-  ( A  e.  N.  ->  -.  A  <N  1o )

Proof of Theorem nlt1pig
StepHypRef Expression
1 elni 7456 . . 3  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
21simprbi 275 . 2  |-  ( A  e.  N.  ->  A  =/=  (/) )
3 noel 3472 . . . . 5  |-  -.  A  e.  (/)
4 1pi 7463 . . . . . . . . 9  |-  1o  e.  N.
5 ltpiord 7467 . . . . . . . . 9  |-  ( ( A  e.  N.  /\  1o  e.  N. )  -> 
( A  <N  1o  <->  A  e.  1o ) )
64, 5mpan2 425 . . . . . . . 8  |-  ( A  e.  N.  ->  ( A  <N  1o  <->  A  e.  1o ) )
7 df-1o 6525 . . . . . . . . . 10  |-  1o  =  suc  (/)
87eleq2i 2274 . . . . . . . . 9  |-  ( A  e.  1o  <->  A  e.  suc  (/) )
9 elsucg 4469 . . . . . . . . 9  |-  ( A  e.  N.  ->  ( A  e.  suc  (/)  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
108, 9bitrid 192 . . . . . . . 8  |-  ( A  e.  N.  ->  ( A  e.  1o  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
116, 10bitrd 188 . . . . . . 7  |-  ( A  e.  N.  ->  ( A  <N  1o  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
1211biimpa 296 . . . . . 6  |-  ( ( A  e.  N.  /\  A  <N  1o )  -> 
( A  e.  (/)  \/  A  =  (/) ) )
1312ord 726 . . . . 5  |-  ( ( A  e.  N.  /\  A  <N  1o )  -> 
( -.  A  e.  (/)  ->  A  =  (/) ) )
143, 13mpi 15 . . . 4  |-  ( ( A  e.  N.  /\  A  <N  1o )  ->  A  =  (/) )
1514ex 115 . . 3  |-  ( A  e.  N.  ->  ( A  <N  1o  ->  A  =  (/) ) )
1615necon3ad 2420 . 2  |-  ( A  e.  N.  ->  ( A  =/=  (/)  ->  -.  A  <N  1o ) )
172, 16mpd 13 1  |-  ( A  e.  N.  ->  -.  A  <N  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178    =/= wne 2378   (/)c0 3468   class class class wbr 4059   suc csuc 4430   omcom 4656   1oc1o 6518   N.cnpi 7420    <N clti 7423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-eprel 4354  df-suc 4436  df-iom 4657  df-xp 4699  df-1o 6525  df-ni 7452  df-lti 7455
This theorem is referenced by:  caucvgsr  7950
  Copyright terms: Public domain W3C validator