| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nlt1pig | Unicode version | ||
| Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.) |
| Ref | Expression |
|---|---|
| nlt1pig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elni 7421 |
. . 3
| |
| 2 | 1 | simprbi 275 |
. 2
|
| 3 | noel 3464 |
. . . . 5
| |
| 4 | 1pi 7428 |
. . . . . . . . 9
| |
| 5 | ltpiord 7432 |
. . . . . . . . 9
| |
| 6 | 4, 5 | mpan2 425 |
. . . . . . . 8
|
| 7 | df-1o 6502 |
. . . . . . . . . 10
| |
| 8 | 7 | eleq2i 2272 |
. . . . . . . . 9
|
| 9 | elsucg 4451 |
. . . . . . . . 9
| |
| 10 | 8, 9 | bitrid 192 |
. . . . . . . 8
|
| 11 | 6, 10 | bitrd 188 |
. . . . . . 7
|
| 12 | 11 | biimpa 296 |
. . . . . 6
|
| 13 | 12 | ord 726 |
. . . . 5
|
| 14 | 3, 13 | mpi 15 |
. . . 4
|
| 15 | 14 | ex 115 |
. . 3
|
| 16 | 15 | necon3ad 2418 |
. 2
|
| 17 | 2, 16 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-eprel 4336 df-suc 4418 df-iom 4639 df-xp 4681 df-1o 6502 df-ni 7417 df-lti 7420 |
| This theorem is referenced by: caucvgsr 7915 |
| Copyright terms: Public domain | W3C validator |