ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiota1 GIF version

Theorem nfiota1 5192
Description: Bound-variable hypothesis builder for the class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1 𝑥(℩𝑥𝜑)

Proof of Theorem nfiota1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5191 . 2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
2 nfaba1 2335 . . 3 𝑥{𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
32nfuni 3827 . 2 𝑥 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
41, 3nfcxfr 2326 1 𝑥(℩𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1361  {cab 2173  wnfc 2316   cuni 3821  cio 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-sn 3610  df-uni 3822  df-iota 5190
This theorem is referenced by:  iota2df  5214  sniota  5219  nfriota1  5851  erovlem  6641
  Copyright terms: Public domain W3C validator