| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfiota1 | GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfiota1 | ⊢ Ⅎ𝑥(℩𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5238 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 2 | nfaba1 2355 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 3 | 2 | nfuni 3858 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| 4 | 1, 3 | nfcxfr 2346 | 1 ⊢ Ⅎ𝑥(℩𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 {cab 2192 Ⅎwnfc 2336 ∪ cuni 3852 ℩cio 5235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-sn 3640 df-uni 3853 df-iota 5237 |
| This theorem is referenced by: iota2df 5262 sniota 5267 nfriota1 5914 erovlem 6721 |
| Copyright terms: Public domain | W3C validator |