| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfiota1 | GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfiota1 | ⊢ Ⅎ𝑥(℩𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5220 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 2 | nfaba1 2345 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 3 | 2 | nfuni 3845 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| 4 | 1, 3 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(℩𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 {cab 2182 Ⅎwnfc 2326 ∪ cuni 3839 ℩cio 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-sn 3628 df-uni 3840 df-iota 5219 |
| This theorem is referenced by: iota2df 5244 sniota 5249 nfriota1 5885 erovlem 6686 |
| Copyright terms: Public domain | W3C validator |