ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiota1 GIF version

Theorem nfiota1 5155
Description: Bound-variable hypothesis builder for the class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1 𝑥(℩𝑥𝜑)

Proof of Theorem nfiota1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5154 . 2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
2 nfaba1 2314 . . 3 𝑥{𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
32nfuni 3795 . 2 𝑥 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
41, 3nfcxfr 2305 1 𝑥(℩𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341  {cab 2151  wnfc 2295   cuni 3789  cio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-sn 3582  df-uni 3790  df-iota 5153
This theorem is referenced by:  iota2df  5177  sniota  5180  nfriota1  5805  erovlem  6593
  Copyright terms: Public domain W3C validator