Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zsupcllemstep | Unicode version |
Description: Lemma for zsupcl 11880. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
Ref | Expression |
---|---|
zsupcllemstep.dc | DECID |
Ref | Expression |
---|---|
zsupcllemstep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9475 | . . . . 5 | |
2 | 1 | ad3antrrr 484 | . . . 4 |
3 | nfv 1516 | . . . . . . . 8 | |
4 | nfv 1516 | . . . . . . . . 9 | |
5 | nfcv 2308 | . . . . . . . . . 10 | |
6 | nfra1 2497 | . . . . . . . . . . 11 | |
7 | nfra1 2497 | . . . . . . . . . . 11 | |
8 | 6, 7 | nfan 1553 | . . . . . . . . . 10 |
9 | 5, 8 | nfrexya 2507 | . . . . . . . . 9 |
10 | 4, 9 | nfim 1560 | . . . . . . . 8 |
11 | 3, 10 | nfan 1553 | . . . . . . 7 |
12 | nfv 1516 | . . . . . . 7 | |
13 | 11, 12 | nfan 1553 | . . . . . 6 |
14 | nfv 1516 | . . . . . 6 | |
15 | 13, 14 | nfan 1553 | . . . . 5 |
16 | nfcv 2308 | . . . . . . . . . . 11 | |
17 | 16 | elrabsf 2989 | . . . . . . . . . 10 |
18 | 17 | simprbi 273 | . . . . . . . . 9 |
19 | sbsbc 2955 | . . . . . . . . 9 | |
20 | 18, 19 | sylibr 133 | . . . . . . . 8 |
21 | 20 | ad2antlr 481 | . . . . . . 7 |
22 | elrabi 2879 | . . . . . . . . . . 11 | |
23 | zltp1le 9245 | . . . . . . . . . . 11 | |
24 | 2, 22, 23 | syl2an 287 | . . . . . . . . . 10 |
25 | 24 | biimpa 294 | . . . . . . . . 9 |
26 | 2 | peano2zd 9316 | . . . . . . . . . . 11 |
27 | eluz 9479 | . . . . . . . . . . 11 | |
28 | 26, 22, 27 | syl2an 287 | . . . . . . . . . 10 |
29 | 28 | adantr 274 | . . . . . . . . 9 |
30 | 25, 29 | mpbird 166 | . . . . . . . 8 |
31 | simprr 522 | . . . . . . . . 9 | |
32 | 31 | ad3antrrr 484 | . . . . . . . 8 |
33 | nfs1v 1927 | . . . . . . . . . 10 | |
34 | 33 | nfn 1646 | . . . . . . . . 9 |
35 | sbequ12 1759 | . . . . . . . . . 10 | |
36 | 35 | notbid 657 | . . . . . . . . 9 |
37 | 34, 36 | rspc 2824 | . . . . . . . 8 |
38 | 30, 32, 37 | sylc 62 | . . . . . . 7 |
39 | 21, 38 | pm2.65da 651 | . . . . . 6 |
40 | 39 | ex 114 | . . . . 5 |
41 | 15, 40 | ralrimi 2537 | . . . 4 |
42 | 2 | ad2antrr 480 | . . . . . . . 8 |
43 | simpllr 524 | . . . . . . . 8 | |
44 | 16 | elrabsf 2989 | . . . . . . . 8 |
45 | 42, 43, 44 | sylanbrc 414 | . . . . . . 7 |
46 | breq2 3986 | . . . . . . . 8 | |
47 | 46 | rspcev 2830 | . . . . . . 7 |
48 | 45, 47 | sylancom 417 | . . . . . 6 |
49 | 48 | exp31 362 | . . . . 5 |
50 | 15, 49 | ralrimi 2537 | . . . 4 |
51 | breq1 3985 | . . . . . . . 8 | |
52 | 51 | notbid 657 | . . . . . . 7 |
53 | 52 | ralbidv 2466 | . . . . . 6 |
54 | breq2 3986 | . . . . . . . 8 | |
55 | 54 | imbi1d 230 | . . . . . . 7 |
56 | 55 | ralbidv 2466 | . . . . . 6 |
57 | 53, 56 | anbi12d 465 | . . . . 5 |
58 | 57 | rspcev 2830 | . . . 4 |
59 | 2, 41, 50, 58 | syl12anc 1226 | . . 3 |
60 | sbcng 2991 | . . . . . . . 8 | |
61 | 60 | ad2antrr 480 | . . . . . . 7 |
62 | 61 | biimpar 295 | . . . . . 6 |
63 | sbcsng 3635 | . . . . . . 7 | |
64 | 63 | ad3antrrr 484 | . . . . . 6 |
65 | 62, 64 | mpbid 146 | . . . . 5 |
66 | simplrr 526 | . . . . 5 | |
67 | uzid 9480 | . . . . . . . . . . 11 | |
68 | peano2uz 9521 | . . . . . . . . . . 11 | |
69 | 67, 68 | syl 14 | . . . . . . . . . 10 |
70 | fzouzsplit 10114 | . . . . . . . . . 10 ..^ | |
71 | 1, 69, 70 | 3syl 17 | . . . . . . . . 9 ..^ |
72 | fzosn 10140 | . . . . . . . . . . 11 ..^ | |
73 | 1, 72 | syl 14 | . . . . . . . . . 10 ..^ |
74 | 73 | uneq1d 3275 | . . . . . . . . 9 ..^ |
75 | 71, 74 | eqtrd 2198 | . . . . . . . 8 |
76 | 75 | raleqdv 2667 | . . . . . . 7 |
77 | ralunb 3303 | . . . . . . 7 | |
78 | 76, 77 | bitrdi 195 | . . . . . 6 |
79 | 78 | ad3antrrr 484 | . . . . 5 |
80 | 65, 66, 79 | mpbir2and 934 | . . . 4 |
81 | simprl 521 | . . . . . 6 | |
82 | simplr 520 | . . . . . 6 | |
83 | 81, 82 | mpand 426 | . . . . 5 |
84 | 83 | adantr 274 | . . . 4 |
85 | 80, 84 | mpd 13 | . . 3 |
86 | zsupcllemstep.dc | . . . . . . 7 DECID | |
87 | 86 | ralrimiva 2539 | . . . . . 6 DECID |
88 | 81, 87 | syl 14 | . . . . 5 DECID |
89 | nfsbc1v 2969 | . . . . . . . 8 | |
90 | 89 | nfdc 1647 | . . . . . . 7 DECID |
91 | sbceq1a 2960 | . . . . . . . 8 | |
92 | 91 | dcbid 828 | . . . . . . 7 DECID DECID |
93 | 90, 92 | rspc 2824 | . . . . . 6 DECID DECID |
94 | 93 | ad2antrr 480 | . . . . 5 DECID DECID |
95 | 88, 94 | mpd 13 | . . . 4 DECID |
96 | exmiddc 826 | . . . 4 DECID | |
97 | 95, 96 | syl 14 | . . 3 |
98 | 59, 85, 97 | mpjaodan 788 | . 2 |
99 | 98 | exp31 362 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 wsb 1750 wcel 2136 wral 2444 wrex 2445 crab 2448 wsbc 2951 cun 3114 csn 3576 class class class wbr 3982 cfv 5188 (class class class)co 5842 cr 7752 c1 7754 caddc 7756 clt 7933 cle 7934 cz 9191 cuz 9466 ..^cfzo 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 |
This theorem is referenced by: zsupcllemex 11879 |
Copyright terms: Public domain | W3C validator |