ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemstep Unicode version

Theorem zsupcllemstep 11929
Description: Lemma for zsupcl 11931. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypothesis
Ref Expression
zsupcllemstep.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
Assertion
Ref Expression
zsupcllemstep  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
Distinct variable groups:    n, K, x, y, z    n, M, y    ph, n, y    ps, x, y, z
Allowed substitution hints:    ph( x, z)    ps( n)    M( x, z)

Proof of Theorem zsupcllemstep
StepHypRef Expression
1 eluzelz 9526 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
21ad3antrrr 492 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  K  e.  ZZ )
3 nfv 1528 . . . . . . . 8  |-  F/ y  K  e.  ( ZZ>= `  M )
4 nfv 1528 . . . . . . . . 9  |-  F/ y ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )
5 nfcv 2319 . . . . . . . . . 10  |-  F/_ y ZZ
6 nfra1 2508 . . . . . . . . . . 11  |-  F/ y A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y
7 nfra1 2508 . . . . . . . . . . 11  |-  F/ y A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)
86, 7nfan 1565 . . . . . . . . . 10  |-  F/ y ( A. y  e. 
{ n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
95, 8nfrexya 2518 . . . . . . . . 9  |-  F/ y E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
104, 9nfim 1572 . . . . . . . 8  |-  F/ y ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
113, 10nfan 1565 . . . . . . 7  |-  F/ y ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
12 nfv 1528 . . . . . . 7  |-  F/ y ( ph  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps )
1311, 12nfan 1565 . . . . . 6  |-  F/ y ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )
14 nfv 1528 . . . . . 6  |-  F/ y
[. K  /  n ]. ps
1513, 14nfan 1565 . . . . 5  |-  F/ y ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )
16 nfcv 2319 . . . . . . . . . . 11  |-  F/_ n ZZ
1716elrabsf 3001 . . . . . . . . . 10  |-  ( y  e.  { n  e.  ZZ  |  ps }  <->  ( y  e.  ZZ  /\  [. y  /  n ]. ps ) )
1817simprbi 275 . . . . . . . . 9  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  [. y  /  n ]. ps )
19 sbsbc 2966 . . . . . . . . 9  |-  ( [ y  /  n ] ps 
<-> 
[. y  /  n ]. ps )
2018, 19sylibr 134 . . . . . . . 8  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  [ y  /  n ] ps )
2120ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  [ y  /  n ] ps )
22 elrabi 2890 . . . . . . . . . . 11  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  y  e.  ZZ )
23 zltp1le 9296 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  y  e.  ZZ )  ->  ( K  <  y  <->  ( K  +  1 )  <_  y ) )
242, 22, 23syl2an 289 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  -> 
( K  <  y  <->  ( K  +  1 )  <_  y ) )
2524biimpa 296 . . . . . . . . 9  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
( K  +  1 )  <_  y )
262peano2zd 9367 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( K  +  1 )  e.  ZZ )
27 eluz 9530 . . . . . . . . . . 11  |-  ( ( ( K  +  1 )  e.  ZZ  /\  y  e.  ZZ )  ->  ( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
2826, 22, 27syl2an 289 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  -> 
( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
2928adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
3025, 29mpbird 167 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
y  e.  ( ZZ>= `  ( K  +  1
) ) )
31 simprr 531 . . . . . . . . 9  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  ( K  + 
1 ) )  -. 
ps )
3231ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  A. n  e.  ( ZZ>=
`  ( K  + 
1 ) )  -. 
ps )
33 nfs1v 1939 . . . . . . . . . 10  |-  F/ n [ y  /  n ] ps
3433nfn 1658 . . . . . . . . 9  |-  F/ n  -.  [ y  /  n ] ps
35 sbequ12 1771 . . . . . . . . . 10  |-  ( n  =  y  ->  ( ps 
<->  [ y  /  n ] ps ) )
3635notbid 667 . . . . . . . . 9  |-  ( n  =  y  ->  ( -.  ps  <->  -.  [ y  /  n ] ps )
)
3734, 36rspc 2835 . . . . . . . 8  |-  ( y  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps  ->  -.  [ y  /  n ] ps ) )
3830, 32, 37sylc 62 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  -.  [ y  /  n ] ps )
3921, 38pm2.65da 661 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  ->  -.  K  <  y )
4039ex 115 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( y  e.  { n  e.  ZZ  |  ps }  ->  -.  K  <  y
) )
4115, 40ralrimi 2548 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y )
422ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  K  e.  ZZ )
43 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  [. K  /  n ]. ps )
4416elrabsf 3001 . . . . . . . 8  |-  ( K  e.  { n  e.  ZZ  |  ps }  <->  ( K  e.  ZZ  /\  [. K  /  n ]. ps ) )
4542, 43, 44sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  K  e.  { n  e.  ZZ  |  ps } )
46 breq2 4004 . . . . . . . 8  |-  ( z  =  K  ->  (
y  <  z  <->  y  <  K ) )
4746rspcev 2841 . . . . . . 7  |-  ( ( K  e.  { n  e.  ZZ  |  ps }  /\  y  <  K )  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)
4845, 47sylancom 420 . . . . . 6  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z )
4948exp31 364 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( y  e.  RR  ->  (
y  <  K  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
) )
5015, 49ralrimi 2548 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  A. y  e.  RR  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
51 breq1 4003 . . . . . . . 8  |-  ( x  =  K  ->  (
x  <  y  <->  K  <  y ) )
5251notbid 667 . . . . . . 7  |-  ( x  =  K  ->  ( -.  x  <  y  <->  -.  K  <  y ) )
5352ralbidv 2477 . . . . . 6  |-  ( x  =  K  ->  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  <->  A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y ) )
54 breq2 4004 . . . . . . . 8  |-  ( x  =  K  ->  (
y  <  x  <->  y  <  K ) )
5554imbi1d 231 . . . . . . 7  |-  ( x  =  K  ->  (
( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)  <->  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
5655ralbidv 2477 . . . . . 6  |-  ( x  =  K  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)  <->  A. y  e.  RR  ( y  <  K  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
) ) )
5753, 56anbi12d 473 . . . . 5  |-  ( x  =  K  ->  (
( A. y  e. 
{ n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )  <->  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y  /\  A. y  e.  RR  (
y  <  K  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
) ) )
5857rspcev 2841 . . . 4  |-  ( ( K  e.  ZZ  /\  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  K  < 
y  /\  A. y  e.  RR  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
592, 41, 50, 58syl12anc 1236 . . 3  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
60 sbcng 3003 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( [. K  /  n ].  -.  ps 
<->  -.  [. K  /  n ]. ps ) )
6160ad2antrr 488 . . . . . . 7  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( [. K  /  n ].  -.  ps  <->  -.  [. K  /  n ]. ps )
)
6261biimpar 297 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  [. K  /  n ].  -.  ps )
63 sbcsng 3650 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( [. K  /  n ].  -.  ps 
<-> 
A. n  e.  { K }  -.  ps )
)
6463ad3antrrr 492 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( [. K  /  n ].  -.  ps  <->  A. n  e.  { K }  -.  ps ) )
6562, 64mpbid 147 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  { K }  -.  ps )
66 simplrr 536 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  ( ZZ>= `  ( K  +  1 ) )  -.  ps )
67 uzid 9531 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  ( ZZ>= `  K )
)
68 peano2uz 9572 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  K
)  ->  ( K  +  1 )  e.  ( ZZ>= `  K )
)
6967, 68syl 14 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ( ZZ>= `  K
) )
70 fzouzsplit 10165 . . . . . . . . . 10  |-  ( ( K  +  1 )  e.  ( ZZ>= `  K
)  ->  ( ZZ>= `  K )  =  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
711, 69, 703syl 17 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  K )  =  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
72 fzosn 10191 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K..^ ( K  +  1 ) )  =  { K } )
731, 72syl 14 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K..^ ( K  +  1
) )  =  { K } )
7473uneq1d 3288 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  =  ( { K }  u.  ( ZZ>= `  ( K  +  1
) ) ) )
7571, 74eqtrd 2210 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  K )  =  ( { K }  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
7675raleqdv 2678 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  K )  -.  ps  <->  A. n  e.  ( { K }  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  -.  ps ) )
77 ralunb 3316 . . . . . . 7  |-  ( A. n  e.  ( { K }  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  -.  ps  <->  ( A. n  e.  { K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps ) )
7876, 77bitrdi 196 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  K )  -.  ps  <->  ( A. n  e.  { K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps ) ) )
7978ad3antrrr 492 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( A. n  e.  ( ZZ>=
`  K )  -. 
ps 
<->  ( A. n  e. 
{ K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1 ) )  -.  ps ) ) )
8065, 66, 79mpbir2and 944 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  ( ZZ>= `  K )  -.  ps )
81 simprl 529 . . . . . 6  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  ph )
82 simplr 528 . . . . . 6  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8381, 82mpand 429 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( A. n  e.  ( ZZ>= `  K )  -.  ps  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8483adantr 276 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( A. n  e.  ( ZZ>=
`  K )  -. 
ps  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8580, 84mpd 13 . . 3  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
86 zsupcllemstep.dc . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
8786ralrimiva 2550 . . . . . 6  |-  ( ph  ->  A. n  e.  (
ZZ>= `  M )DECID  ps )
8881, 87syl 14 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  M )DECID  ps )
89 nfsbc1v 2981 . . . . . . . 8  |-  F/ n [. K  /  n ]. ps
9089nfdc 1659 . . . . . . 7  |-  F/ nDECID  [. K  /  n ]. ps
91 sbceq1a 2972 . . . . . . . 8  |-  ( n  =  K  ->  ( ps 
<-> 
[. K  /  n ]. ps ) )
9291dcbid 838 . . . . . . 7  |-  ( n  =  K  ->  (DECID  ps  <-> DECID  [. K  /  n ]. ps )
)
9390, 92rspc 2835 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  M )DECID  ps  -> DECID  [. K  /  n ]. ps ) )
9493ad2antrr 488 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( A. n  e.  ( ZZ>= `  M )DECID  ps  -> DECID  [. K  /  n ]. ps ) )
9588, 94mpd 13 . . . 4  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> DECID  [. K  /  n ]. ps )
96 exmiddc 836 . . . 4  |-  (DECID  [. K  /  n ]. ps  ->  (
[. K  /  n ]. ps  \/  -.  [. K  /  n ]. ps ) )
9795, 96syl 14 . . 3  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( [. K  /  n ]. ps  \/  -.  [. K  /  n ]. ps ) )
9859, 85, 97mpjaodan 798 . 2  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
9998exp31 364 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353   [wsb 1762    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   [.wsbc 2962    u. cun 3127   {csn 3591   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   RRcr 7801   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983   ZZcz 9242   ZZ>=cuz 9517  ..^cfzo 10128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129
This theorem is referenced by:  zsupcllemex  11930
  Copyright terms: Public domain W3C validator