| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsupcllemstep | Unicode version | ||
| Description: Lemma for zsupcl 10446. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| Ref | Expression |
|---|---|
| zsupcllemstep.dc |
|
| Ref | Expression |
|---|---|
| zsupcllemstep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9727 |
. . . . 5
| |
| 2 | 1 | ad3antrrr 492 |
. . . 4
|
| 3 | nfv 1574 |
. . . . . . . 8
| |
| 4 | nfv 1574 |
. . . . . . . . 9
| |
| 5 | nfcv 2372 |
. . . . . . . . . 10
| |
| 6 | nfra1 2561 |
. . . . . . . . . . 11
| |
| 7 | nfra1 2561 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | nfan 1611 |
. . . . . . . . . 10
|
| 9 | 5, 8 | nfrexya 2571 |
. . . . . . . . 9
|
| 10 | 4, 9 | nfim 1618 |
. . . . . . . 8
|
| 11 | 3, 10 | nfan 1611 |
. . . . . . 7
|
| 12 | nfv 1574 |
. . . . . . 7
| |
| 13 | 11, 12 | nfan 1611 |
. . . . . 6
|
| 14 | nfv 1574 |
. . . . . 6
| |
| 15 | 13, 14 | nfan 1611 |
. . . . 5
|
| 16 | nfcv 2372 |
. . . . . . . . . . 11
| |
| 17 | 16 | elrabsf 3067 |
. . . . . . . . . 10
|
| 18 | 17 | simprbi 275 |
. . . . . . . . 9
|
| 19 | sbsbc 3032 |
. . . . . . . . 9
| |
| 20 | 18, 19 | sylibr 134 |
. . . . . . . 8
|
| 21 | 20 | ad2antlr 489 |
. . . . . . 7
|
| 22 | elrabi 2956 |
. . . . . . . . . . 11
| |
| 23 | zltp1le 9497 |
. . . . . . . . . . 11
| |
| 24 | 2, 22, 23 | syl2an 289 |
. . . . . . . . . 10
|
| 25 | 24 | biimpa 296 |
. . . . . . . . 9
|
| 26 | 2 | peano2zd 9568 |
. . . . . . . . . . 11
|
| 27 | eluz 9731 |
. . . . . . . . . . 11
| |
| 28 | 26, 22, 27 | syl2an 289 |
. . . . . . . . . 10
|
| 29 | 28 | adantr 276 |
. . . . . . . . 9
|
| 30 | 25, 29 | mpbird 167 |
. . . . . . . 8
|
| 31 | simprr 531 |
. . . . . . . . 9
| |
| 32 | 31 | ad3antrrr 492 |
. . . . . . . 8
|
| 33 | nfs1v 1990 |
. . . . . . . . . 10
| |
| 34 | 33 | nfn 1704 |
. . . . . . . . 9
|
| 35 | sbequ12 1817 |
. . . . . . . . . 10
| |
| 36 | 35 | notbid 671 |
. . . . . . . . 9
|
| 37 | 34, 36 | rspc 2901 |
. . . . . . . 8
|
| 38 | 30, 32, 37 | sylc 62 |
. . . . . . 7
|
| 39 | 21, 38 | pm2.65da 665 |
. . . . . 6
|
| 40 | 39 | ex 115 |
. . . . 5
|
| 41 | 15, 40 | ralrimi 2601 |
. . . 4
|
| 42 | 2 | ad2antrr 488 |
. . . . . . . 8
|
| 43 | simpllr 534 |
. . . . . . . 8
| |
| 44 | 16 | elrabsf 3067 |
. . . . . . . 8
|
| 45 | 42, 43, 44 | sylanbrc 417 |
. . . . . . 7
|
| 46 | breq2 4086 |
. . . . . . . 8
| |
| 47 | 46 | rspcev 2907 |
. . . . . . 7
|
| 48 | 45, 47 | sylancom 420 |
. . . . . 6
|
| 49 | 48 | exp31 364 |
. . . . 5
|
| 50 | 15, 49 | ralrimi 2601 |
. . . 4
|
| 51 | breq1 4085 |
. . . . . . . 8
| |
| 52 | 51 | notbid 671 |
. . . . . . 7
|
| 53 | 52 | ralbidv 2530 |
. . . . . 6
|
| 54 | breq2 4086 |
. . . . . . . 8
| |
| 55 | 54 | imbi1d 231 |
. . . . . . 7
|
| 56 | 55 | ralbidv 2530 |
. . . . . 6
|
| 57 | 53, 56 | anbi12d 473 |
. . . . 5
|
| 58 | 57 | rspcev 2907 |
. . . 4
|
| 59 | 2, 41, 50, 58 | syl12anc 1269 |
. . 3
|
| 60 | sbcng 3069 |
. . . . . . . 8
| |
| 61 | 60 | ad2antrr 488 |
. . . . . . 7
|
| 62 | 61 | biimpar 297 |
. . . . . 6
|
| 63 | sbcsng 3725 |
. . . . . . 7
| |
| 64 | 63 | ad3antrrr 492 |
. . . . . 6
|
| 65 | 62, 64 | mpbid 147 |
. . . . 5
|
| 66 | simplrr 536 |
. . . . 5
| |
| 67 | uzid 9732 |
. . . . . . . . . . 11
| |
| 68 | peano2uz 9774 |
. . . . . . . . . . 11
| |
| 69 | 67, 68 | syl 14 |
. . . . . . . . . 10
|
| 70 | fzouzsplit 10373 |
. . . . . . . . . 10
| |
| 71 | 1, 69, 70 | 3syl 17 |
. . . . . . . . 9
|
| 72 | fzosn 10406 |
. . . . . . . . . . 11
| |
| 73 | 1, 72 | syl 14 |
. . . . . . . . . 10
|
| 74 | 73 | uneq1d 3357 |
. . . . . . . . 9
|
| 75 | 71, 74 | eqtrd 2262 |
. . . . . . . 8
|
| 76 | 75 | raleqdv 2734 |
. . . . . . 7
|
| 77 | ralunb 3385 |
. . . . . . 7
| |
| 78 | 76, 77 | bitrdi 196 |
. . . . . 6
|
| 79 | 78 | ad3antrrr 492 |
. . . . 5
|
| 80 | 65, 66, 79 | mpbir2and 950 |
. . . 4
|
| 81 | simprl 529 |
. . . . . 6
| |
| 82 | simplr 528 |
. . . . . 6
| |
| 83 | 81, 82 | mpand 429 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | 80, 84 | mpd 13 |
. . 3
|
| 86 | zsupcllemstep.dc |
. . . . . . 7
| |
| 87 | 86 | ralrimiva 2603 |
. . . . . 6
|
| 88 | 81, 87 | syl 14 |
. . . . 5
|
| 89 | nfsbc1v 3047 |
. . . . . . . 8
| |
| 90 | 89 | nfdc 1705 |
. . . . . . 7
|
| 91 | sbceq1a 3038 |
. . . . . . . 8
| |
| 92 | 91 | dcbid 843 |
. . . . . . 7
|
| 93 | 90, 92 | rspc 2901 |
. . . . . 6
|
| 94 | 93 | ad2antrr 488 |
. . . . 5
|
| 95 | 88, 94 | mpd 13 |
. . . 4
|
| 96 | exmiddc 841 |
. . . 4
| |
| 97 | 95, 96 | syl 14 |
. . 3
|
| 98 | 59, 85, 97 | mpjaodan 803 |
. 2
|
| 99 | 98 | exp31 364 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 |
| This theorem is referenced by: zsupcllemex 10445 |
| Copyright terms: Public domain | W3C validator |