ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemstep Unicode version

Theorem zsupcllemstep 11964
Description: Lemma for zsupcl 11966. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypothesis
Ref Expression
zsupcllemstep.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
Assertion
Ref Expression
zsupcllemstep  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
Distinct variable groups:    n, K, x, y, z    n, M, y    ph, n, y    ps, x, y, z
Allowed substitution hints:    ph( x, z)    ps( n)    M( x, z)

Proof of Theorem zsupcllemstep
StepHypRef Expression
1 eluzelz 9555 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
21ad3antrrr 492 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  K  e.  ZZ )
3 nfv 1539 . . . . . . . 8  |-  F/ y  K  e.  ( ZZ>= `  M )
4 nfv 1539 . . . . . . . . 9  |-  F/ y ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )
5 nfcv 2332 . . . . . . . . . 10  |-  F/_ y ZZ
6 nfra1 2521 . . . . . . . . . . 11  |-  F/ y A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y
7 nfra1 2521 . . . . . . . . . . 11  |-  F/ y A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)
86, 7nfan 1576 . . . . . . . . . 10  |-  F/ y ( A. y  e. 
{ n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
95, 8nfrexya 2531 . . . . . . . . 9  |-  F/ y E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
104, 9nfim 1583 . . . . . . . 8  |-  F/ y ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
113, 10nfan 1576 . . . . . . 7  |-  F/ y ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
12 nfv 1539 . . . . . . 7  |-  F/ y ( ph  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps )
1311, 12nfan 1576 . . . . . 6  |-  F/ y ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )
14 nfv 1539 . . . . . 6  |-  F/ y
[. K  /  n ]. ps
1513, 14nfan 1576 . . . . 5  |-  F/ y ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )
16 nfcv 2332 . . . . . . . . . . 11  |-  F/_ n ZZ
1716elrabsf 3016 . . . . . . . . . 10  |-  ( y  e.  { n  e.  ZZ  |  ps }  <->  ( y  e.  ZZ  /\  [. y  /  n ]. ps ) )
1817simprbi 275 . . . . . . . . 9  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  [. y  /  n ]. ps )
19 sbsbc 2981 . . . . . . . . 9  |-  ( [ y  /  n ] ps 
<-> 
[. y  /  n ]. ps )
2018, 19sylibr 134 . . . . . . . 8  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  [ y  /  n ] ps )
2120ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  [ y  /  n ] ps )
22 elrabi 2905 . . . . . . . . . . 11  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  y  e.  ZZ )
23 zltp1le 9325 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  y  e.  ZZ )  ->  ( K  <  y  <->  ( K  +  1 )  <_  y ) )
242, 22, 23syl2an 289 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  -> 
( K  <  y  <->  ( K  +  1 )  <_  y ) )
2524biimpa 296 . . . . . . . . 9  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
( K  +  1 )  <_  y )
262peano2zd 9396 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( K  +  1 )  e.  ZZ )
27 eluz 9559 . . . . . . . . . . 11  |-  ( ( ( K  +  1 )  e.  ZZ  /\  y  e.  ZZ )  ->  ( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
2826, 22, 27syl2an 289 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  -> 
( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
2928adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
3025, 29mpbird 167 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
y  e.  ( ZZ>= `  ( K  +  1
) ) )
31 simprr 531 . . . . . . . . 9  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  ( K  + 
1 ) )  -. 
ps )
3231ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  A. n  e.  ( ZZ>=
`  ( K  + 
1 ) )  -. 
ps )
33 nfs1v 1951 . . . . . . . . . 10  |-  F/ n [ y  /  n ] ps
3433nfn 1669 . . . . . . . . 9  |-  F/ n  -.  [ y  /  n ] ps
35 sbequ12 1782 . . . . . . . . . 10  |-  ( n  =  y  ->  ( ps 
<->  [ y  /  n ] ps ) )
3635notbid 668 . . . . . . . . 9  |-  ( n  =  y  ->  ( -.  ps  <->  -.  [ y  /  n ] ps )
)
3734, 36rspc 2850 . . . . . . . 8  |-  ( y  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps  ->  -.  [ y  /  n ] ps ) )
3830, 32, 37sylc 62 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  -.  [ y  /  n ] ps )
3921, 38pm2.65da 662 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  ->  -.  K  <  y )
4039ex 115 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( y  e.  { n  e.  ZZ  |  ps }  ->  -.  K  <  y
) )
4115, 40ralrimi 2561 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y )
422ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  K  e.  ZZ )
43 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  [. K  /  n ]. ps )
4416elrabsf 3016 . . . . . . . 8  |-  ( K  e.  { n  e.  ZZ  |  ps }  <->  ( K  e.  ZZ  /\  [. K  /  n ]. ps ) )
4542, 43, 44sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  K  e.  { n  e.  ZZ  |  ps } )
46 breq2 4022 . . . . . . . 8  |-  ( z  =  K  ->  (
y  <  z  <->  y  <  K ) )
4746rspcev 2856 . . . . . . 7  |-  ( ( K  e.  { n  e.  ZZ  |  ps }  /\  y  <  K )  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)
4845, 47sylancom 420 . . . . . 6  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z )
4948exp31 364 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( y  e.  RR  ->  (
y  <  K  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
) )
5015, 49ralrimi 2561 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  A. y  e.  RR  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
51 breq1 4021 . . . . . . . 8  |-  ( x  =  K  ->  (
x  <  y  <->  K  <  y ) )
5251notbid 668 . . . . . . 7  |-  ( x  =  K  ->  ( -.  x  <  y  <->  -.  K  <  y ) )
5352ralbidv 2490 . . . . . 6  |-  ( x  =  K  ->  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  <->  A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y ) )
54 breq2 4022 . . . . . . . 8  |-  ( x  =  K  ->  (
y  <  x  <->  y  <  K ) )
5554imbi1d 231 . . . . . . 7  |-  ( x  =  K  ->  (
( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)  <->  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
5655ralbidv 2490 . . . . . 6  |-  ( x  =  K  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)  <->  A. y  e.  RR  ( y  <  K  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
) ) )
5753, 56anbi12d 473 . . . . 5  |-  ( x  =  K  ->  (
( A. y  e. 
{ n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )  <->  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y  /\  A. y  e.  RR  (
y  <  K  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
) ) )
5857rspcev 2856 . . . 4  |-  ( ( K  e.  ZZ  /\  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  K  < 
y  /\  A. y  e.  RR  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
592, 41, 50, 58syl12anc 1247 . . 3  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
60 sbcng 3018 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( [. K  /  n ].  -.  ps 
<->  -.  [. K  /  n ]. ps ) )
6160ad2antrr 488 . . . . . . 7  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( [. K  /  n ].  -.  ps  <->  -.  [. K  /  n ]. ps )
)
6261biimpar 297 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  [. K  /  n ].  -.  ps )
63 sbcsng 3666 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( [. K  /  n ].  -.  ps 
<-> 
A. n  e.  { K }  -.  ps )
)
6463ad3antrrr 492 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( [. K  /  n ].  -.  ps  <->  A. n  e.  { K }  -.  ps ) )
6562, 64mpbid 147 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  { K }  -.  ps )
66 simplrr 536 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  ( ZZ>= `  ( K  +  1 ) )  -.  ps )
67 uzid 9560 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  ( ZZ>= `  K )
)
68 peano2uz 9601 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  K
)  ->  ( K  +  1 )  e.  ( ZZ>= `  K )
)
6967, 68syl 14 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ( ZZ>= `  K
) )
70 fzouzsplit 10197 . . . . . . . . . 10  |-  ( ( K  +  1 )  e.  ( ZZ>= `  K
)  ->  ( ZZ>= `  K )  =  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
711, 69, 703syl 17 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  K )  =  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
72 fzosn 10223 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K..^ ( K  +  1 ) )  =  { K } )
731, 72syl 14 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K..^ ( K  +  1
) )  =  { K } )
7473uneq1d 3303 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  =  ( { K }  u.  ( ZZ>= `  ( K  +  1
) ) ) )
7571, 74eqtrd 2222 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  K )  =  ( { K }  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
7675raleqdv 2692 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  K )  -.  ps  <->  A. n  e.  ( { K }  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  -.  ps ) )
77 ralunb 3331 . . . . . . 7  |-  ( A. n  e.  ( { K }  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  -.  ps  <->  ( A. n  e.  { K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps ) )
7876, 77bitrdi 196 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  K )  -.  ps  <->  ( A. n  e.  { K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps ) ) )
7978ad3antrrr 492 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( A. n  e.  ( ZZ>=
`  K )  -. 
ps 
<->  ( A. n  e. 
{ K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1 ) )  -.  ps ) ) )
8065, 66, 79mpbir2and 946 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  ( ZZ>= `  K )  -.  ps )
81 simprl 529 . . . . . 6  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  ph )
82 simplr 528 . . . . . 6  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8381, 82mpand 429 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( A. n  e.  ( ZZ>= `  K )  -.  ps  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8483adantr 276 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( A. n  e.  ( ZZ>=
`  K )  -. 
ps  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8580, 84mpd 13 . . 3  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
86 zsupcllemstep.dc . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
8786ralrimiva 2563 . . . . . 6  |-  ( ph  ->  A. n  e.  (
ZZ>= `  M )DECID  ps )
8881, 87syl 14 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  M )DECID  ps )
89 nfsbc1v 2996 . . . . . . . 8  |-  F/ n [. K  /  n ]. ps
9089nfdc 1670 . . . . . . 7  |-  F/ nDECID  [. K  /  n ]. ps
91 sbceq1a 2987 . . . . . . . 8  |-  ( n  =  K  ->  ( ps 
<-> 
[. K  /  n ]. ps ) )
9291dcbid 839 . . . . . . 7  |-  ( n  =  K  ->  (DECID  ps  <-> DECID  [. K  /  n ]. ps )
)
9390, 92rspc 2850 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  M )DECID  ps  -> DECID  [. K  /  n ]. ps ) )
9493ad2antrr 488 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( A. n  e.  ( ZZ>= `  M )DECID  ps  -> DECID  [. K  /  n ]. ps ) )
9588, 94mpd 13 . . . 4  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> DECID  [. K  /  n ]. ps )
96 exmiddc 837 . . . 4  |-  (DECID  [. K  /  n ]. ps  ->  (
[. K  /  n ]. ps  \/  -.  [. K  /  n ]. ps ) )
9795, 96syl 14 . . 3  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( [. K  /  n ]. ps  \/  -.  [. K  /  n ]. ps ) )
9859, 85, 97mpjaodan 799 . 2  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
9998exp31 364 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364   [wsb 1773    e. wcel 2160   A.wral 2468   E.wrex 2469   {crab 2472   [.wsbc 2977    u. cun 3142   {csn 3607   class class class wbr 4018   ` cfv 5231  (class class class)co 5891   RRcr 7828   1c1 7830    + caddc 7832    < clt 8010    <_ cle 8011   ZZcz 9271   ZZ>=cuz 9546  ..^cfzo 10160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-n0 9195  df-z 9272  df-uz 9547  df-fz 10027  df-fzo 10161
This theorem is referenced by:  zsupcllemex  11965
  Copyright terms: Public domain W3C validator