Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zsupcllemstep | Unicode version |
Description: Lemma for zsupcl 11828. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
Ref | Expression |
---|---|
zsupcllemstep.dc | DECID |
Ref | Expression |
---|---|
zsupcllemstep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9443 | . . . . 5 | |
2 | 1 | ad3antrrr 484 | . . . 4 |
3 | nfv 1508 | . . . . . . . 8 | |
4 | nfv 1508 | . . . . . . . . 9 | |
5 | nfcv 2299 | . . . . . . . . . 10 | |
6 | nfra1 2488 | . . . . . . . . . . 11 | |
7 | nfra1 2488 | . . . . . . . . . . 11 | |
8 | 6, 7 | nfan 1545 | . . . . . . . . . 10 |
9 | 5, 8 | nfrexya 2498 | . . . . . . . . 9 |
10 | 4, 9 | nfim 1552 | . . . . . . . 8 |
11 | 3, 10 | nfan 1545 | . . . . . . 7 |
12 | nfv 1508 | . . . . . . 7 | |
13 | 11, 12 | nfan 1545 | . . . . . 6 |
14 | nfv 1508 | . . . . . 6 | |
15 | 13, 14 | nfan 1545 | . . . . 5 |
16 | nfcv 2299 | . . . . . . . . . . 11 | |
17 | 16 | elrabsf 2975 | . . . . . . . . . 10 |
18 | 17 | simprbi 273 | . . . . . . . . 9 |
19 | sbsbc 2941 | . . . . . . . . 9 | |
20 | 18, 19 | sylibr 133 | . . . . . . . 8 |
21 | 20 | ad2antlr 481 | . . . . . . 7 |
22 | elrabi 2865 | . . . . . . . . . . 11 | |
23 | zltp1le 9216 | . . . . . . . . . . 11 | |
24 | 2, 22, 23 | syl2an 287 | . . . . . . . . . 10 |
25 | 24 | biimpa 294 | . . . . . . . . 9 |
26 | 2 | peano2zd 9284 | . . . . . . . . . . 11 |
27 | eluz 9447 | . . . . . . . . . . 11 | |
28 | 26, 22, 27 | syl2an 287 | . . . . . . . . . 10 |
29 | 28 | adantr 274 | . . . . . . . . 9 |
30 | 25, 29 | mpbird 166 | . . . . . . . 8 |
31 | simprr 522 | . . . . . . . . 9 | |
32 | 31 | ad3antrrr 484 | . . . . . . . 8 |
33 | nfs1v 1919 | . . . . . . . . . 10 | |
34 | 33 | nfn 1638 | . . . . . . . . 9 |
35 | sbequ12 1751 | . . . . . . . . . 10 | |
36 | 35 | notbid 657 | . . . . . . . . 9 |
37 | 34, 36 | rspc 2810 | . . . . . . . 8 |
38 | 30, 32, 37 | sylc 62 | . . . . . . 7 |
39 | 21, 38 | pm2.65da 651 | . . . . . 6 |
40 | 39 | ex 114 | . . . . 5 |
41 | 15, 40 | ralrimi 2528 | . . . 4 |
42 | 2 | ad2antrr 480 | . . . . . . . 8 |
43 | simpllr 524 | . . . . . . . 8 | |
44 | 16 | elrabsf 2975 | . . . . . . . 8 |
45 | 42, 43, 44 | sylanbrc 414 | . . . . . . 7 |
46 | breq2 3969 | . . . . . . . 8 | |
47 | 46 | rspcev 2816 | . . . . . . 7 |
48 | 45, 47 | sylancom 417 | . . . . . 6 |
49 | 48 | exp31 362 | . . . . 5 |
50 | 15, 49 | ralrimi 2528 | . . . 4 |
51 | breq1 3968 | . . . . . . . 8 | |
52 | 51 | notbid 657 | . . . . . . 7 |
53 | 52 | ralbidv 2457 | . . . . . 6 |
54 | breq2 3969 | . . . . . . . 8 | |
55 | 54 | imbi1d 230 | . . . . . . 7 |
56 | 55 | ralbidv 2457 | . . . . . 6 |
57 | 53, 56 | anbi12d 465 | . . . . 5 |
58 | 57 | rspcev 2816 | . . . 4 |
59 | 2, 41, 50, 58 | syl12anc 1218 | . . 3 |
60 | sbcng 2977 | . . . . . . . 8 | |
61 | 60 | ad2antrr 480 | . . . . . . 7 |
62 | 61 | biimpar 295 | . . . . . 6 |
63 | sbcsng 3618 | . . . . . . 7 | |
64 | 63 | ad3antrrr 484 | . . . . . 6 |
65 | 62, 64 | mpbid 146 | . . . . 5 |
66 | simplrr 526 | . . . . 5 | |
67 | uzid 9448 | . . . . . . . . . . 11 | |
68 | peano2uz 9489 | . . . . . . . . . . 11 | |
69 | 67, 68 | syl 14 | . . . . . . . . . 10 |
70 | fzouzsplit 10073 | . . . . . . . . . 10 ..^ | |
71 | 1, 69, 70 | 3syl 17 | . . . . . . . . 9 ..^ |
72 | fzosn 10099 | . . . . . . . . . . 11 ..^ | |
73 | 1, 72 | syl 14 | . . . . . . . . . 10 ..^ |
74 | 73 | uneq1d 3260 | . . . . . . . . 9 ..^ |
75 | 71, 74 | eqtrd 2190 | . . . . . . . 8 |
76 | 75 | raleqdv 2658 | . . . . . . 7 |
77 | ralunb 3288 | . . . . . . 7 | |
78 | 76, 77 | bitrdi 195 | . . . . . 6 |
79 | 78 | ad3antrrr 484 | . . . . 5 |
80 | 65, 66, 79 | mpbir2and 929 | . . . 4 |
81 | simprl 521 | . . . . . 6 | |
82 | simplr 520 | . . . . . 6 | |
83 | 81, 82 | mpand 426 | . . . . 5 |
84 | 83 | adantr 274 | . . . 4 |
85 | 80, 84 | mpd 13 | . . 3 |
86 | zsupcllemstep.dc | . . . . . . 7 DECID | |
87 | 86 | ralrimiva 2530 | . . . . . 6 DECID |
88 | 81, 87 | syl 14 | . . . . 5 DECID |
89 | nfsbc1v 2955 | . . . . . . . 8 | |
90 | 89 | nfdc 1639 | . . . . . . 7 DECID |
91 | sbceq1a 2946 | . . . . . . . 8 | |
92 | 91 | dcbid 824 | . . . . . . 7 DECID DECID |
93 | 90, 92 | rspc 2810 | . . . . . 6 DECID DECID |
94 | 93 | ad2antrr 480 | . . . . 5 DECID DECID |
95 | 88, 94 | mpd 13 | . . . 4 DECID |
96 | exmiddc 822 | . . . 4 DECID | |
97 | 95, 96 | syl 14 | . . 3 |
98 | 59, 85, 97 | mpjaodan 788 | . 2 |
99 | 98 | exp31 362 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 wceq 1335 wsb 1742 wcel 2128 wral 2435 wrex 2436 crab 2439 wsbc 2937 cun 3100 csn 3560 class class class wbr 3965 cfv 5169 (class class class)co 5821 cr 7726 c1 7728 caddc 7730 clt 7907 cle 7908 cz 9162 cuz 9434 ..^cfzo 10036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7818 ax-resscn 7819 ax-1cn 7820 ax-1re 7821 ax-icn 7822 ax-addcl 7823 ax-addrcl 7824 ax-mulcl 7825 ax-addcom 7827 ax-addass 7829 ax-distr 7831 ax-i2m1 7832 ax-0lt1 7833 ax-0id 7835 ax-rnegex 7836 ax-cnre 7838 ax-pre-ltirr 7839 ax-pre-ltwlin 7840 ax-pre-lttrn 7841 ax-pre-apti 7842 ax-pre-ltadd 7843 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-pnf 7909 df-mnf 7910 df-xr 7911 df-ltxr 7912 df-le 7913 df-sub 8043 df-neg 8044 df-inn 8829 df-n0 9086 df-z 9163 df-uz 9435 df-fz 9908 df-fzo 10037 |
This theorem is referenced by: zsupcllemex 11827 |
Copyright terms: Public domain | W3C validator |