| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsupcllemstep | Unicode version | ||
| Description: Lemma for zsupcl 10374. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| Ref | Expression |
|---|---|
| zsupcllemstep.dc |
|
| Ref | Expression |
|---|---|
| zsupcllemstep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9657 |
. . . . 5
| |
| 2 | 1 | ad3antrrr 492 |
. . . 4
|
| 3 | nfv 1551 |
. . . . . . . 8
| |
| 4 | nfv 1551 |
. . . . . . . . 9
| |
| 5 | nfcv 2348 |
. . . . . . . . . 10
| |
| 6 | nfra1 2537 |
. . . . . . . . . . 11
| |
| 7 | nfra1 2537 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | nfan 1588 |
. . . . . . . . . 10
|
| 9 | 5, 8 | nfrexya 2547 |
. . . . . . . . 9
|
| 10 | 4, 9 | nfim 1595 |
. . . . . . . 8
|
| 11 | 3, 10 | nfan 1588 |
. . . . . . 7
|
| 12 | nfv 1551 |
. . . . . . 7
| |
| 13 | 11, 12 | nfan 1588 |
. . . . . 6
|
| 14 | nfv 1551 |
. . . . . 6
| |
| 15 | 13, 14 | nfan 1588 |
. . . . 5
|
| 16 | nfcv 2348 |
. . . . . . . . . . 11
| |
| 17 | 16 | elrabsf 3037 |
. . . . . . . . . 10
|
| 18 | 17 | simprbi 275 |
. . . . . . . . 9
|
| 19 | sbsbc 3002 |
. . . . . . . . 9
| |
| 20 | 18, 19 | sylibr 134 |
. . . . . . . 8
|
| 21 | 20 | ad2antlr 489 |
. . . . . . 7
|
| 22 | elrabi 2926 |
. . . . . . . . . . 11
| |
| 23 | zltp1le 9427 |
. . . . . . . . . . 11
| |
| 24 | 2, 22, 23 | syl2an 289 |
. . . . . . . . . 10
|
| 25 | 24 | biimpa 296 |
. . . . . . . . 9
|
| 26 | 2 | peano2zd 9498 |
. . . . . . . . . . 11
|
| 27 | eluz 9661 |
. . . . . . . . . . 11
| |
| 28 | 26, 22, 27 | syl2an 289 |
. . . . . . . . . 10
|
| 29 | 28 | adantr 276 |
. . . . . . . . 9
|
| 30 | 25, 29 | mpbird 167 |
. . . . . . . 8
|
| 31 | simprr 531 |
. . . . . . . . 9
| |
| 32 | 31 | ad3antrrr 492 |
. . . . . . . 8
|
| 33 | nfs1v 1967 |
. . . . . . . . . 10
| |
| 34 | 33 | nfn 1681 |
. . . . . . . . 9
|
| 35 | sbequ12 1794 |
. . . . . . . . . 10
| |
| 36 | 35 | notbid 669 |
. . . . . . . . 9
|
| 37 | 34, 36 | rspc 2871 |
. . . . . . . 8
|
| 38 | 30, 32, 37 | sylc 62 |
. . . . . . 7
|
| 39 | 21, 38 | pm2.65da 663 |
. . . . . 6
|
| 40 | 39 | ex 115 |
. . . . 5
|
| 41 | 15, 40 | ralrimi 2577 |
. . . 4
|
| 42 | 2 | ad2antrr 488 |
. . . . . . . 8
|
| 43 | simpllr 534 |
. . . . . . . 8
| |
| 44 | 16 | elrabsf 3037 |
. . . . . . . 8
|
| 45 | 42, 43, 44 | sylanbrc 417 |
. . . . . . 7
|
| 46 | breq2 4048 |
. . . . . . . 8
| |
| 47 | 46 | rspcev 2877 |
. . . . . . 7
|
| 48 | 45, 47 | sylancom 420 |
. . . . . 6
|
| 49 | 48 | exp31 364 |
. . . . 5
|
| 50 | 15, 49 | ralrimi 2577 |
. . . 4
|
| 51 | breq1 4047 |
. . . . . . . 8
| |
| 52 | 51 | notbid 669 |
. . . . . . 7
|
| 53 | 52 | ralbidv 2506 |
. . . . . 6
|
| 54 | breq2 4048 |
. . . . . . . 8
| |
| 55 | 54 | imbi1d 231 |
. . . . . . 7
|
| 56 | 55 | ralbidv 2506 |
. . . . . 6
|
| 57 | 53, 56 | anbi12d 473 |
. . . . 5
|
| 58 | 57 | rspcev 2877 |
. . . 4
|
| 59 | 2, 41, 50, 58 | syl12anc 1248 |
. . 3
|
| 60 | sbcng 3039 |
. . . . . . . 8
| |
| 61 | 60 | ad2antrr 488 |
. . . . . . 7
|
| 62 | 61 | biimpar 297 |
. . . . . 6
|
| 63 | sbcsng 3692 |
. . . . . . 7
| |
| 64 | 63 | ad3antrrr 492 |
. . . . . 6
|
| 65 | 62, 64 | mpbid 147 |
. . . . 5
|
| 66 | simplrr 536 |
. . . . 5
| |
| 67 | uzid 9662 |
. . . . . . . . . . 11
| |
| 68 | peano2uz 9704 |
. . . . . . . . . . 11
| |
| 69 | 67, 68 | syl 14 |
. . . . . . . . . 10
|
| 70 | fzouzsplit 10303 |
. . . . . . . . . 10
| |
| 71 | 1, 69, 70 | 3syl 17 |
. . . . . . . . 9
|
| 72 | fzosn 10334 |
. . . . . . . . . . 11
| |
| 73 | 1, 72 | syl 14 |
. . . . . . . . . 10
|
| 74 | 73 | uneq1d 3326 |
. . . . . . . . 9
|
| 75 | 71, 74 | eqtrd 2238 |
. . . . . . . 8
|
| 76 | 75 | raleqdv 2708 |
. . . . . . 7
|
| 77 | ralunb 3354 |
. . . . . . 7
| |
| 78 | 76, 77 | bitrdi 196 |
. . . . . 6
|
| 79 | 78 | ad3antrrr 492 |
. . . . 5
|
| 80 | 65, 66, 79 | mpbir2and 947 |
. . . 4
|
| 81 | simprl 529 |
. . . . . 6
| |
| 82 | simplr 528 |
. . . . . 6
| |
| 83 | 81, 82 | mpand 429 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | 80, 84 | mpd 13 |
. . 3
|
| 86 | zsupcllemstep.dc |
. . . . . . 7
| |
| 87 | 86 | ralrimiva 2579 |
. . . . . 6
|
| 88 | 81, 87 | syl 14 |
. . . . 5
|
| 89 | nfsbc1v 3017 |
. . . . . . . 8
| |
| 90 | 89 | nfdc 1682 |
. . . . . . 7
|
| 91 | sbceq1a 3008 |
. . . . . . . 8
| |
| 92 | 91 | dcbid 840 |
. . . . . . 7
|
| 93 | 90, 92 | rspc 2871 |
. . . . . 6
|
| 94 | 93 | ad2antrr 488 |
. . . . 5
|
| 95 | 88, 94 | mpd 13 |
. . . 4
|
| 96 | exmiddc 838 |
. . . 4
| |
| 97 | 95, 96 | syl 14 |
. . 3
|
| 98 | 59, 85, 97 | mpjaodan 800 |
. 2
|
| 99 | 98 | exp31 364 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-fzo 10265 |
| This theorem is referenced by: zsupcllemex 10373 |
| Copyright terms: Public domain | W3C validator |