ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsup Unicode version

Theorem nfsup 7120
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1  |-  F/_ x A
nfsup.2  |-  F/_ x B
nfsup.3  |-  F/_ x R
Assertion
Ref Expression
nfsup  |-  F/_ x sup ( A ,  B ,  R )

Proof of Theorem nfsup
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7112 . 2  |-  sup ( A ,  B ,  R )  =  U. { u  e.  B  |  ( A. v  e.  A  -.  u R v  /\  A. v  e.  B  (
v R u  ->  E. w  e.  A  v R w ) ) }
2 nfsup.1 . . . . . 6  |-  F/_ x A
3 nfcv 2350 . . . . . . . 8  |-  F/_ x u
4 nfsup.3 . . . . . . . 8  |-  F/_ x R
5 nfcv 2350 . . . . . . . 8  |-  F/_ x
v
63, 4, 5nfbr 4106 . . . . . . 7  |-  F/ x  u R v
76nfn 1682 . . . . . 6  |-  F/ x  -.  u R v
82, 7nfralya 2548 . . . . 5  |-  F/ x A. v  e.  A  -.  u R v
9 nfsup.2 . . . . . 6  |-  F/_ x B
105, 4, 3nfbr 4106 . . . . . . 7  |-  F/ x  v R u
11 nfcv 2350 . . . . . . . . 9  |-  F/_ x w
125, 4, 11nfbr 4106 . . . . . . . 8  |-  F/ x  v R w
132, 12nfrexya 2549 . . . . . . 7  |-  F/ x E. w  e.  A  v R w
1410, 13nfim 1596 . . . . . 6  |-  F/ x
( v R u  ->  E. w  e.  A  v R w )
159, 14nfralya 2548 . . . . 5  |-  F/ x A. v  e.  B  ( v R u  ->  E. w  e.  A  v R w )
168, 15nfan 1589 . . . 4  |-  F/ x
( A. v  e.  A  -.  u R v  /\  A. v  e.  B  ( v R u  ->  E. w  e.  A  v R w ) )
1716, 9nfrabw 2689 . . 3  |-  F/_ x { u  e.  B  |  ( A. v  e.  A  -.  u R v  /\  A. v  e.  B  (
v R u  ->  E. w  e.  A  v R w ) ) }
1817nfuni 3870 . 2  |-  F/_ x U. { u  e.  B  |  ( A. v  e.  A  -.  u R v  /\  A. v  e.  B  (
v R u  ->  E. w  e.  A  v R w ) ) }
191, 18nfcxfr 2347 1  |-  F/_ x sup ( A ,  B ,  R )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   F/_wnfc 2337   A.wral 2486   E.wrex 2487   {crab 2490   U.cuni 3864   class class class wbr 4059   supcsup 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-sup 7112
This theorem is referenced by:  nfinf  7145  infssuzcldc  10415
  Copyright terms: Public domain W3C validator