ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsup Unicode version

Theorem nfsup 6993
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1  |-  F/_ x A
nfsup.2  |-  F/_ x B
nfsup.3  |-  F/_ x R
Assertion
Ref Expression
nfsup  |-  F/_ x sup ( A ,  B ,  R )

Proof of Theorem nfsup
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 6985 . 2  |-  sup ( A ,  B ,  R )  =  U. { u  e.  B  |  ( A. v  e.  A  -.  u R v  /\  A. v  e.  B  (
v R u  ->  E. w  e.  A  v R w ) ) }
2 nfsup.1 . . . . . 6  |-  F/_ x A
3 nfcv 2319 . . . . . . . 8  |-  F/_ x u
4 nfsup.3 . . . . . . . 8  |-  F/_ x R
5 nfcv 2319 . . . . . . . 8  |-  F/_ x
v
63, 4, 5nfbr 4051 . . . . . . 7  |-  F/ x  u R v
76nfn 1658 . . . . . 6  |-  F/ x  -.  u R v
82, 7nfralya 2517 . . . . 5  |-  F/ x A. v  e.  A  -.  u R v
9 nfsup.2 . . . . . 6  |-  F/_ x B
105, 4, 3nfbr 4051 . . . . . . 7  |-  F/ x  v R u
11 nfcv 2319 . . . . . . . . 9  |-  F/_ x w
125, 4, 11nfbr 4051 . . . . . . . 8  |-  F/ x  v R w
132, 12nfrexya 2518 . . . . . . 7  |-  F/ x E. w  e.  A  v R w
1410, 13nfim 1572 . . . . . 6  |-  F/ x
( v R u  ->  E. w  e.  A  v R w )
159, 14nfralya 2517 . . . . 5  |-  F/ x A. v  e.  B  ( v R u  ->  E. w  e.  A  v R w )
168, 15nfan 1565 . . . 4  |-  F/ x
( A. v  e.  A  -.  u R v  /\  A. v  e.  B  ( v R u  ->  E. w  e.  A  v R w ) )
1716, 9nfrabxy 2658 . . 3  |-  F/_ x { u  e.  B  |  ( A. v  e.  A  -.  u R v  /\  A. v  e.  B  (
v R u  ->  E. w  e.  A  v R w ) ) }
1817nfuni 3817 . 2  |-  F/_ x U. { u  e.  B  |  ( A. v  e.  A  -.  u R v  /\  A. v  e.  B  (
v R u  ->  E. w  e.  A  v R w ) ) }
191, 18nfcxfr 2316 1  |-  F/_ x sup ( A ,  B ,  R )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   F/_wnfc 2306   A.wral 2455   E.wrex 2456   {crab 2459   U.cuni 3811   class class class wbr 4005   supcsup 6983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-sup 6985
This theorem is referenced by:  nfinf  7018  infssuzcldc  11954
  Copyright terms: Public domain W3C validator