| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdc | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfdc.1 |
|
| Ref | Expression |
|---|---|
| nfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 |
. 2
| |
| 2 | nfdc.1 |
. . 3
| |
| 3 | 2 | nfn 1682 |
. . 3
|
| 4 | 2, 3 | nfor 1598 |
. 2
|
| 5 | 1, 4 | nfxfr 1498 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-gen 1473 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1485 |
| This theorem is referenced by: 19.32dc 1703 finexdc 7025 ssfirab 7059 opabfi 7061 dcfi 7109 exfzdc 10406 zsupcllemstep 10409 infssuzex 10413 nfsum1 11782 nfsum 11783 nfcprod1 11980 nfcprod 11981 nnwosdc 12475 ctiunctlemudc 12923 iswomninnlem 16190 |
| Copyright terms: Public domain | W3C validator |