| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdc | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfdc.1 |
|
| Ref | Expression |
|---|---|
| nfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 |
. 2
| |
| 2 | nfdc.1 |
. . 3
| |
| 3 | 2 | nfn 1681 |
. . 3
|
| 4 | 2, 3 | nfor 1597 |
. 2
|
| 5 | 1, 4 | nfxfr 1497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-gen 1472 ax-ie2 1517 ax-4 1533 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1484 |
| This theorem is referenced by: 19.32dc 1702 finexdc 6999 ssfirab 7033 opabfi 7035 dcfi 7083 exfzdc 10369 zsupcllemstep 10372 infssuzex 10376 nfsum1 11667 nfsum 11668 nfcprod1 11865 nfcprod 11866 nnwosdc 12360 ctiunctlemudc 12808 iswomninnlem 15988 |
| Copyright terms: Public domain | W3C validator |