ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc Unicode version

Theorem nfdc 1673
Description: If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1  |-  F/ x ph
Assertion
Ref Expression
nfdc  |-  F/ xDECID  ph

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 836 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 nfdc.1 . . 3  |-  F/ x ph
32nfn 1672 . . 3  |-  F/ x  -.  ph
42, 3nfor 1588 . 2  |-  F/ x
( ph  \/  -.  ph )
51, 4nfxfr 1488 1  |-  F/ xDECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 709  DECID wdc 835   F/wnf 1474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-gen 1463  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1475
This theorem is referenced by:  19.32dc  1693  finexdc  6963  ssfirab  6997  opabfi  6999  dcfi  7047  exfzdc  10316  zsupcllemstep  10319  infssuzex  10323  nfsum1  11521  nfsum  11522  nfcprod1  11719  nfcprod  11720  nnwosdc  12206  ctiunctlemudc  12654  iswomninnlem  15693
  Copyright terms: Public domain W3C validator