ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc Unicode version

Theorem nfdc 1682
Description: If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1  |-  F/ x ph
Assertion
Ref Expression
nfdc  |-  F/ xDECID  ph

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 837 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 nfdc.1 . . 3  |-  F/ x ph
32nfn 1681 . . 3  |-  F/ x  -.  ph
42, 3nfor 1597 . 2  |-  F/ x
( ph  \/  -.  ph )
51, 4nfxfr 1497 1  |-  F/ xDECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 710  DECID wdc 836   F/wnf 1483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-gen 1472  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1484
This theorem is referenced by:  19.32dc  1702  finexdc  6999  ssfirab  7033  opabfi  7035  dcfi  7083  exfzdc  10369  zsupcllemstep  10372  infssuzex  10376  nfsum1  11667  nfsum  11668  nfcprod1  11865  nfcprod  11866  nnwosdc  12360  ctiunctlemudc  12808  iswomninnlem  15988
  Copyright terms: Public domain W3C validator