| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdc | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfdc.1 |
|
| Ref | Expression |
|---|---|
| nfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 |
. 2
| |
| 2 | nfdc.1 |
. . 3
| |
| 3 | 2 | nfn 1672 |
. . 3
|
| 4 | 2, 3 | nfor 1588 |
. 2
|
| 5 | 1, 4 | nfxfr 1488 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 |
| This theorem is referenced by: 19.32dc 1693 finexdc 6972 ssfirab 7006 opabfi 7008 dcfi 7056 exfzdc 10333 zsupcllemstep 10336 infssuzex 10340 nfsum1 11538 nfsum 11539 nfcprod1 11736 nfcprod 11737 nnwosdc 12231 ctiunctlemudc 12679 iswomninnlem 15780 |
| Copyright terms: Public domain | W3C validator |