ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc Unicode version

Theorem nfdc 1659
Description: If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1  |-  F/ x ph
Assertion
Ref Expression
nfdc  |-  F/ xDECID  ph

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 835 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 nfdc.1 . . 3  |-  F/ x ph
32nfn 1658 . . 3  |-  F/ x  -.  ph
42, 3nfor 1574 . 2  |-  F/ x
( ph  \/  -.  ph )
51, 4nfxfr 1474 1  |-  F/ xDECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 708  DECID wdc 834   F/wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-gen 1449  ax-ie2 1494  ax-4 1510  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-fal 1359  df-nf 1461
This theorem is referenced by:  19.32dc  1679  finexdc  6902  ssfirab  6933  dcfi  6980  exfzdc  10240  nfsum1  11364  nfsum  11365  nfcprod1  11562  nfcprod  11563  zsupcllemstep  11946  infssuzex  11950  nnwosdc  12040  ctiunctlemudc  12438  iswomninnlem  14800
  Copyright terms: Public domain W3C validator