ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc Unicode version

Theorem nfdc 1670
Description: If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1  |-  F/ x ph
Assertion
Ref Expression
nfdc  |-  F/ xDECID  ph

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 836 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 nfdc.1 . . 3  |-  F/ x ph
32nfn 1669 . . 3  |-  F/ x  -.  ph
42, 3nfor 1585 . 2  |-  F/ x
( ph  \/  -.  ph )
51, 4nfxfr 1485 1  |-  F/ xDECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 709  DECID wdc 835   F/wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-gen 1460  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1472
This theorem is referenced by:  19.32dc  1690  finexdc  6958  ssfirab  6990  opabfi  6992  dcfi  7040  exfzdc  10307  nfsum1  11499  nfsum  11500  nfcprod1  11697  nfcprod  11698  zsupcllemstep  12082  infssuzex  12086  nnwosdc  12176  ctiunctlemudc  12594  iswomninnlem  15539
  Copyright terms: Public domain W3C validator