ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc Unicode version

Theorem nfdc 1647
Description: If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1  |-  F/ x ph
Assertion
Ref Expression
nfdc  |-  F/ xDECID  ph

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 825 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 nfdc.1 . . 3  |-  F/ x ph
32nfn 1646 . . 3  |-  F/ x  -.  ph
42, 3nfor 1562 . 2  |-  F/ x
( ph  \/  -.  ph )
51, 4nfxfr 1462 1  |-  F/ xDECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 698  DECID wdc 824   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449
This theorem is referenced by:  19.32dc  1667  finexdc  6868  ssfirab  6899  dcfi  6946  exfzdc  10175  nfsum1  11297  nfsum  11298  nfcprod1  11495  nfcprod  11496  zsupcllemstep  11878  infssuzex  11882  nnwosdc  11972  ctiunctlemudc  12370  iswomninnlem  13928
  Copyright terms: Public domain W3C validator