ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc Unicode version

Theorem nfdc 1705
Description: If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1  |-  F/ x ph
Assertion
Ref Expression
nfdc  |-  F/ xDECID  ph

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 840 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 nfdc.1 . . 3  |-  F/ x ph
32nfn 1704 . . 3  |-  F/ x  -.  ph
42, 3nfor 1620 . 2  |-  F/ x
( ph  \/  -.  ph )
51, 4nfxfr 1520 1  |-  F/ xDECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 713  DECID wdc 839   F/wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-gen 1495  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by:  19.32dc  1725  finexdc  7064  ssfirab  7098  opabfi  7100  dcfi  7148  exfzdc  10446  zsupcllemstep  10449  infssuzex  10453  nfsum1  11867  nfsum  11868  nfcprod1  12065  nfcprod  12066  nnwosdc  12560  ctiunctlemudc  13008  iswomninnlem  16417
  Copyright terms: Public domain W3C validator