ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc Unicode version

Theorem nfdc 1639
Description: If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1  |-  F/ x ph
Assertion
Ref Expression
nfdc  |-  F/ xDECID  ph

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 821 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 nfdc.1 . . 3  |-  F/ x ph
32nfn 1638 . . 3  |-  F/ x  -.  ph
42, 3nfor 1554 . 2  |-  F/ x
( ph  \/  -.  ph )
51, 4nfxfr 1454 1  |-  F/ xDECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 698  DECID wdc 820   F/wnf 1440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-gen 1429  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-dc 821  df-tru 1338  df-fal 1341  df-nf 1441
This theorem is referenced by:  19.32dc  1659  finexdc  6840  ssfirab  6871  exfzdc  10121  nfsum1  11235  nfsum  11236  nfcprod1  11433  nfcprod  11434  zsupcllemstep  11813  infssuzex  11817  ctiunctlemudc  12138  iswomninnlem  13583
  Copyright terms: Public domain W3C validator