| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdc | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfdc.1 |
|
| Ref | Expression |
|---|---|
| nfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 840 |
. 2
| |
| 2 | nfdc.1 |
. . 3
| |
| 3 | 2 | nfn 1704 |
. . 3
|
| 4 | 2, 3 | nfor 1620 |
. 2
|
| 5 | 1, 4 | nfxfr 1520 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-gen 1495 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-fal 1401 df-nf 1507 |
| This theorem is referenced by: 19.32dc 1725 finexdc 7064 ssfirab 7098 opabfi 7100 dcfi 7148 exfzdc 10446 zsupcllemstep 10449 infssuzex 10453 nfsum1 11867 nfsum 11868 nfcprod1 12065 nfcprod 12066 nnwosdc 12560 ctiunctlemudc 13008 iswomninnlem 16417 |
| Copyright terms: Public domain | W3C validator |