ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc Unicode version

Theorem nfdc 1683
Description: If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1  |-  F/ x ph
Assertion
Ref Expression
nfdc  |-  F/ xDECID  ph

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 837 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 nfdc.1 . . 3  |-  F/ x ph
32nfn 1682 . . 3  |-  F/ x  -.  ph
42, 3nfor 1598 . 2  |-  F/ x
( ph  \/  -.  ph )
51, 4nfxfr 1498 1  |-  F/ xDECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 710  DECID wdc 836   F/wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-gen 1473  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485
This theorem is referenced by:  19.32dc  1703  finexdc  7025  ssfirab  7059  opabfi  7061  dcfi  7109  exfzdc  10406  zsupcllemstep  10409  infssuzex  10413  nfsum1  11782  nfsum  11783  nfcprod1  11980  nfcprod  11981  nnwosdc  12475  ctiunctlemudc  12923  iswomninnlem  16190
  Copyright terms: Public domain W3C validator