Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab3 Unicode version

Theorem nfoprab3 5822
 Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
Assertion
Ref Expression
nfoprab3

Proof of Theorem nfoprab3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5778 . 2
2 nfe1 1472 . . . . 5
32nfex 1616 . . . 4
43nfex 1616 . . 3
54nfab 2286 . 2
61, 5nfcxfr 2278 1
 Colors of variables: wff set class Syntax hints:   wa 103   wceq 1331  wex 1468  cab 2125  wnfc 2268  cop 3530  coprab 5775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-oprab 5778 This theorem is referenced by:  ssoprab2b  5828  ovi3  5907  tposoprab  6177
 Copyright terms: Public domain W3C validator