ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab3 Unicode version

Theorem nfoprab3 5926
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
Assertion
Ref Expression
nfoprab3  |-  F/_ z { <. <. x ,  y
>. ,  z >.  | 
ph }

Proof of Theorem nfoprab3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5879 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
2 nfe1 1496 . . . . 5  |-  F/ z E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )
32nfex 1637 . . . 4  |-  F/ z E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )
43nfex 1637 . . 3  |-  F/ z E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
54nfab 2324 . 2  |-  F/_ z { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
61, 5nfcxfr 2316 1  |-  F/_ z { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492   {cab 2163   F/_wnfc 2306   <.cop 3596   {coprab 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-oprab 5879
This theorem is referenced by:  ssoprab2b  5932  ovi3  6011  tposoprab  6281
  Copyright terms: Public domain W3C validator